Volume 6, Nomor 1, April 2023 p-ISSN: 2541-027X e-ISSN: 2774-9509

Analisa Perkerasan Lentur Jalan Siuhom II Kec Angkola Barat Kab Tapanuli Selatan

Sarip matua siregar¹, Sahrul Harahap², Afniria Pakpahan³

^{1*2,3} Teknik Sipil, Universitas Graha Nusantara

Email: saripmatua27@gmail.com

Abstrak

Dari penelitian ini adalah untuk mengetahui seberapa besar pengaruh pelebaran ruas jalan desa Siuhom terhadap kinerja jalan serta mengetahui perbandingan tebal perkerasan yang ada dilapangan dengan tebal perkerasan yang di analisa. Kinerja jalan dihitung berdasarkan Manual Kapasitas Jalan Indonesia, sedangkan tebal perkerasan menggunakan metode Analisa Komponen.Dalam penelitian ini data yang diambil yaitu data primer dan data sekunder. Data primer yaitu data lendutan Benkelman Beam. Data sekunder terdiri dari data Volume Lalu Lintas dan data International Roughness Index (IRI) jalan. Analisis data dimulai dengan menghitung Cumulative Equivalent Single Axle Load (CESAL) berdasarkan Bina Marga 2013, kemudian menghitung lendutan balik dari hasil pengujian dengan alat Benkelman Beam (BB) menggunakan metode Pd T05-2005-B, serta menentukan Indeks Permukaan berdasarkan nilai IRI dengan menggunakan grafik hubungan Indeks Permukaan (Ip).Dari hasil analisa data diperoleh kesimpulan, yaitu dimana untuk kapasitas jalan dengan kondisi awal sebesar 918,99 setelah dianalisa sebesar 1458,09 sehingga terjadi peningkatan sebesar 1,59 %. Tebal lapisan perkerasan lentur untuk umur rencana 20 tahun dilapangan, tebal permukaan 10,00 cm, pondasi atas 20,00 cm dan pondasi bawah 25,00 cm. Sedangkan perencanaan tebal lapisan perkerasan lentur yang dianalisa tebal permukaan 12,00 cm, pondasi atas 20,00 cm dan pondasi bawah 25,00 cm. Pelebaran ruas jalan sangat berpengaruh terhadap kinerja jalan.Dengan adanya pelebaran ini semoga dapat memacu perkembangan tempat wisata, sekolah, perkantoran terutama perekonomian masyarakat.

Kata Kunci: Analisa, Perkersan, Lentur Jalan

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i1.1096

1. PENDAHULUAN

Perkerasan lentur (flexibel pavement) adalah sistem perkerasan jalan dimana konstruksinya terdiri dari beberapa lapisan. Tiap tiap lapisan perkerasan pada umumnya menggunakan bahan maupun persyaratan yang berbeda sesuai dengan fungsinya yaitu, untuk menyebarkan beban roda kendaraan sedemiakian rupa seningga dapat dilihat oleh tanah dasar dalam batas daya dukungannya lapis permukaan adalah bagian perkerasan terletak paling atas dengan perekat aspal.

Kondisi ini dimungkinkan karena gradasi yang digunakan merupakan gradasi terbuka yang memiliki fraksi agregat kasar tidak kurang dari 85% dari berat total campuran sehingga struktur yang dihasilkan memilki pororitas yang lebih tinggi jugaKerusakan pada kontruksi jalan raya pada umumnya perubahan bentuk lapisan permukaan jalan berupa lubang (potholes), bergelombang (rutting), retak - retak dan pelepasan butiran (revellimg) serta akibat genangan air yang menyebabkan aspal menjadi getas karena sifat aspal tidak tahan terhadap air. Maka, akan cepat berpengaruh terhadap kerusakan jalan aspal tersebut. sangatlah penting Untuk itu. untuk melakukan pemeliharaan yang bersifat pencegahan.kita harus mengetahui awal mula dari penyebab kerusakan diatas, dan cara pemeliharaan jalan supaya tercipta jalan yang aman ,nyaman dan memberikan mamfaat yang signifikan, keberlangsungan dan menjadi salah satu faktor menjadikan peningkatan masyarakat dari beberapa aspek kehidupan kondisi jalan sudah berlubang dan retak-retak yang menyebabkan jarak tempuh pengendara semakin lama Akibat drainase yang tidak

berfungsi dengan maksimal, sehingga menyebabkan genangan air pada permukan jalan. Ketika terjadi genangan air pada permukaan jalan, sementara kendaraan yang melintas terus menerus maka aspal lama kelamaan berubah sifat dari lentur menjadi getas sehingga terjadi jalan berlubangl, maka penulis ingin mencoba

"Menganalis Perkerasan Lentur Jalan

siuhom2 Kec. Angkola Barat, Kab, Tapanuli

Selatan berdasarkan metode dan peraturan

Volume 6, Nomor 1, April 2023

p-ISSN: 2541-027X e-ISSN: 2774-9509

2. LANDASAN TEORI

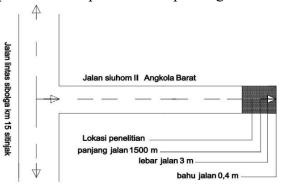
yang ada.

Perkerasan jalan adalah konstruksi yang dibangun diataslapisan tanah dasar (subgrade), yang berfungsi untuk menopang beban lalulintas. Jenis konstruksiperkerasan jalan pada umumnya ada dua jenis, yaitu:

- 1. Perkerasan lentur (flexible pavement)
- 2. Perkerasan kaku (rigid Pavement) Selain dari dua jenis tersebut, Sekarang telah banyak digunakan jenis gabungan (composite pavement), yaitu perpaduan antara lentur dan kaku. Perencanaan konstruksi perkerasan juga dapat dibedakan anatara perencanaan untuk jalan baru dan untuk peningkatan jalan lama yang sudah pernah diperkeras. Adapun yang dimaksud dengan perkerasan lentur adalah perkerasan yang umumnya menggunakan bahan beraspal campuran sebagai permukaan serta bahan berbutir sebagai lapisan dibawahnya. Sedangkan perkerasan kaku ialah Perkerasan jalan beton semen atau secara umum disebut perkerasan kaku, terdiri atas plat (slab) beton semen sebagai lapis pondasi dan lapis pondasi bawah (bisa juga tidak ada) di atas tanah dasar. Perkerasan

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i1.1096

beton yang kaku dan memiliki modulus elastisitas yang tinggiakanmendistribusikan beban ke bidang tanah dasar yang cukup luas sehingga bagianterbesar dari kapasitas struktur perkerasan diperoleh dari plat beton sendiri


3. METODE PENELITIAN

Metode penelitian yang digunakan adalah metode bina marga. Bentuk modevikasi dari metode AASHTO berikut. Adalah beberapa modevikasi untuk kondisi di indonesia yang menggunakan rumus dasar metode AASTHO tetapi telah disesuaikan dengan alam di Indonesia yaitu .

- 1. Indeks permukaan awallapir permukaan yang digunakan di Indonesia diperoleh dariberbagai jenis yang tidak sama mutu yang lain.
- 2. AASHTO menggunakan 2 nilai untuk IPT = 2,0 dan 2,5 sedangkan di Indonesia menggunakan 4 nilai yaitu IPT = 1, 1,5, 2 dan 2,5.
- 3. Faktor regional yang digunakan oleh AASHTO berkembang terutama disebabkan olehadanya 4 musim disamping faktor faktor yang mempengaruhi nilainya yaitu muka air tanah kelandaian jalan derainase.
- 4. Nomogram nomogram yang dipersiapkan oleh AASHTO adalah untuk umur rencana 20 tahun sedangkan bina marga mempersiapkan nomogram untuk umur perencanaan 10 tahun penggunaan nomogram untuk umur rencana yang bukan 10 tahun dapat dikerjakan menggunakan faktor sesuai (FP = umur rencana / 10).untuk mempermudah daerah lokasi

Volume 6, Nomor 1, April 2023 p-ISSN : 2541-027X e-ISSN : 2774-9509

penelitian dapat dilihat pada gambarl.

Gambar. 1 Denah lokasi penelitian jalan siuhom 2 Kec Angtkola Barat

METODE PENGUMPULAN DATA

Pengumpulanm data ini kaitannya data ini erat kaitannya dengan metode survey yang akan dilaksanakan pada penelitian ini. Pemilihan metode survey sangat penting dalam usaha mencapai efisiensi dari keseluruhan survey. Metode yang dipilih ini harus memenuhi tujuan penelitian dan memperhitungkan ketersediaan sumber daya yang ada. Isi penelitian juga dibatasi pada data-data pokok yang diperlukan untuk analisa selanjutnya dalam penelitian. Data curah hujan merupakan data sekunder yang nantinya akan meminta bantuan kepada instansi terkait mengenai data tersebut. Dalam hal ini, instansi terkait tersebut adalah Badan Meteorologi dan Geofisika (BMG). Pengumpulan data curah hujan ini dilakukan dalam rangka menentukan kawasan dengan kategori curah hujan tinggi, sedang dan juga rendah.

Pada pengumpulan data tersebut diharapkan dsapat memperoleh data curah hujan untuk range waktu sekitar 5 tahun, agar pengklasifikasian tersebut dapat valid

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i1.1096

dan dapat mewakili tingkat curah hujan untuk beberapa tahun yang lalu ataupun untuk beberapa tahun yang akan datang. pedoman penentuan Menurut perkerasan lentur dengan metode analisa komponen yang dikeluarkan oleh Dirjen Bina Marga, Akan tetapi, standar klasifikasi tersebut diyakini cukup tinggi dan mungkin sangat sulit menemukan kondisi kawasan yang berada pada standar tersebut khususnya untuk kawasan dengan curah hujan tinggi. Oleh karena itu, pada penelitian skripsi ini akan digunakan metode lain untuk mengklasifikasikan kategori curah hujan.

DESAIN PENELITIAN

Wawancara yang dilakukan terhadap warga sekitar dilakukan dalam rangka mendapatkan data mengenai jamjam sibuk kendaraan berat yang melalui ruas jalan tersebut. Jumlah responden yang akan dimintai informasi berkisar antara 10-15 orang. Hal itulah yang akan menjadi dasar untuk dilakukannya traffic counting dengan tujuan, yakni mendapatkan nilai persentase kendaraan berat. Metode traffic counting ini terdiri dari dua jenis, yaitu : Sembilan Traffic counting untuk menghitung kapasitas ruas jalan pada metode traffic counting ini dilakukan dengan menghitung jumlah kendaraan tiap jam, sehingga diketahui karakteristik lalu lintas tiap jamnya yang melalui ruas jalan tersebut.

Biasanya metode ini dilakukan untuk menganalisa daya tampung atau kapasitas ruas jalan terhadap karakteristik lalu lintas yang ada. Sembilan raffic counting untuk menghitung nilai struktural perkerasan. Metode ini berbeda dengan

Volume 6, Nomor 1, April 2023 p-ISSN : 2541-027X e-ISSN : 2774-9509

traffic counting untuk menghitung kapasitas ruas jalan. Metode ini tidak harus dilakukan untuk tiap jamnya, dikarenakan karakteristik lalu lintas untuk setiap jam tidak terlalu penting.

TEHNIKANALISIS DATA

Tabel 1.Data Jalan Siuhom 2 Kec. Angkola
Barat

Darat								
Data Jaln Siuhom 2 Kec. Angkola Barat Tapsel	Luas							
Lebar jalan	3 m ₂							
Bahu jalan	$0,4 \text{ m}^2$							
Panjang jalan	1500 m^2							

Taknik analisis data merupakan suatu langkah yang paling menentukan dari suatu penelitian, karena analisa data berfungsi untuk menyimpulkan hasil penelitian. Teknik analisis yang digunakan dalam penelitian ini adalah:

- 1. LHR Lalu Lintas Harian Rata rata.
- 2. Data Hasil Survey.
- 3. Jenis jenis Kerusakan Yang Terjadi.
- 4. Tahap Perhitungan Perencanaan Tebal Perkerasan.
- 5. Membuat kesimpulan dari penelitian.

HASIL DAN PEMBAHASAN

1. LHR Lalu Lintas Harian Rata - rata LHR adalah volume lalu lintas yang dua arah yang melalui suatu titik rata-rata dalam satu hari, biasanya dihitung sepanjang tahun. LHR adalah istilah yang baku digunakan dalam menghitung beban lalu lintas pada suatu ruas jalan dan merupakan dasar dalam proses perencanaan transportasi ataupun pengukuran polusi dalam yang diakibatkan oleh arus lalu lintas pada suatu ruas jalan.

Volume 6, Nomor 1, April 2023

Data volume lalu lintas yang

p-ISSN : 2541-027X e-ISSN : 2774-9509

DATA HASIL SURVEY

Tabel 2. Total - lintas harian Rata - rata

Pada hari senin

Pada hari senin			diperoleh dari hasil survei lapangan, untuk		
Waktu	Sedan dan Jeep 2 Ton	Angkot Mini bus	Piceper laan ana Truk coperus I olan sua Gerjahan, Mobil box harus terlebih dahulu disesuaikan dengan		
08:00 - 10:00	7	8	unit kapasitas jalan. Dimana kapasitas jalan		
10:00 - 12:00	5	4	mempunyai unit dalam Satuan Mobil		
13:00 - 15:00	8	7	Penumpang (Passenger Car Unit) per jam,		
15:00-17:00	7	6	2 13		
Jumlah	27	25	yang disingkat menjadi smp/jam. 69		

Ditetapkannya mobil Penumpang

Tabel 3. Total alu - lintas harian Batai pratok andrahan ini kendaraan ini

Waktu	Sedan dan Mini bus Ton	Angkot Pick up Mobil box	odan sebagianke ringan? Jeen 2 mpuniyai sifateda fat sumbu operasional yang hampir sama, lainhalnya
08:00 - 10:00	8	7	dengan kendaraan jenis truk yang sifatnya
5	1	15	sangat bervariasi, terutama akibat dari
10:00 - 12:00	6	6	ukuran dan perbandingan antar berat
4	-	20	dengan tenaganya\ (weight/horsepower
13:00 - 15:00	7	8	
5	1	11	ratio) sangat bervariasi.
15:00 - 17:00	4	5	Adapun data umum yang diperoleh
4	-	20	dari hasil survey dilapangan yaitu sebagai
Jumlah	25	26	berikul 2 66

1. Jenis dan klasifikasi jalan yang

Tabel 4. Total Lalu - lintas harian Ratatinata Pada hari sabtus III/

	Sedan dan Jeep 2 Ton	Angkot Mini bus	Pick up dan Trukc ringan 2 dan Sepeda Lokal dengan febar jalan 3 m Mobil box Motor
Waktu	осер <u>2</u> Топ	Willia bus	3. Faktor pertumbuhan lalu lintas
08:00 - 10:00	9	7	direncan akan 5% dengan nilai CBR 4.
10:00 - 12:00	6	6	5 1 18
13:00 - 15:00	8	7	Data LHR yang di peroleh di lapangan
15:00 - 17:00	4	5	yajtu: 2 21
Jumlah	27	25	a22 Mobil penumpang dan jeep 260 n =

Tabel 5. Total Lalu - lintas Pada hari senin, 26 Kend/hari 2 arah b. Mikrolet ,Angkot d

rabu dan sabtu

b. Mikrolet ,Angkot dan minibus = 25Kend/hari 2 arah

Waktu	Sedan dan Jeep 2 Ton	Angkot dan Mini bus	Pick op dPrick upTrubbilnbox2 = \$@ddend/hari Mobil box 2 arah sumbu Motor
Senin	27	25	d5 Truk Ringar 2 sumbo = 3
Rabu	25	26	18 Kend/hari 2 a rah 66
Sabtu	27	25	e^{2} Sepeda motor = 66 Kehd/hari 2
Rata rata	26	25	18 arah Jumlah rata - rata kenda raan

= 138Kend/hari 2 arah

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika DOI https://doi.org/10.64168/statika.v6i1.1096

p-ISSN: 2541-027X e-ISSN: 2774-9509

3 Jenis – jenis Kerusakan Yang Terjadi

Kerusakan ruas jalan yang menyebabkan tidak nyamannya pengendara sangat menggunakan jalan, baik rusak lubang retak gelombang tambahan retak melintang kulit buaya dan amblas, berikut ini dapat kita lihat jenis kerusakan yang terjadi pada lokasi penelitian.dan rumus mencari kerusakan jalan

- (Luas jalan rusak)/(Luas Jalan Keseluruhan)x 100
- = PXL/(Luas Jalan Keseluruhan)x 100
- = (Panjang x lebar)/(1500 x 3)x 100%
- = (panjang x lebar)/(4500 m)x 100%

Tabel 6. Kerusakan terjadi pada STA 28+000 - STA 28+300

No	Jenis kerusakan	Sta 28+00 - 28+00		Sta 28+100 - 28+200		Sta 28+200 - 28+300	
NO	Jenis Kerusakan	Luas (m²)	% Kerusakan	Luas (m²	% Kerusakan	Luas (m²)	% Kerusakan
1	Lubang (LB)	4,5 m	0,01	9 m	0,2	1,5 m	0,03
2	Retak memanjang (Rm)						
3	Retak kulit buaya (RKB)	3,0 m	0,06				
4	Gelombang (GB)			30 m	0,06	20 m	0,44
5	Retak halus (RH)	37,5 m	0,833	5,25 m	0,116	2,0 m	0,04
6	Tambalan (TB)						
7	Amblas (AB)						
	Jumlah	45 m	0,993 %	44,25 m	0,976 %	23,5 m	0,51 %

Tabel 7. Kerusakan terjadi pada STA 28+3000 - STA 28+600

	•	Sta 28+30	Sta 28+300 - 28+400		Sta 28+400 - 28+500		500 - 28+600
NO	Jenis kerusakan	Luas (m²)	% Kerusakan	Luas (m²)	% Kerusakan	Luas (m²)	% Kerusakan
1	Lubang (LB)			63 m	1,05	45.75 m	1,016
2	Retak memanjang (Rm)	39 m	0,866	7,5 m	0,51	24 m	0,533
3	Retak kulit buaya (RKB)					13 m	0,288
4	Gelombang (GB)						
5	Retak halus (RH)	120 m	2,66				
6	Tambalan (TB)	11,5 m	0,225				
7	Amblas (AB)					50 m	1,111
	Jumlah	170,5 m	3,781 %	70,5 m	1,566 %	132,75 m	2,948 %

Tabel 8. Kerusakan terjadi pada STA 28+600 - STA 29+200

NO	Jenis kerusakan	Sta 28+6	Sta 28+600 - 28+700		Sta 29+00 - 29+100		Sta 29+100 - 29+200	
NU	Jenis Kerusakan	Luas (m²)	% Kerusakan	Luas (m²)	% Kerusakan	Luas (m²)	% Kerusakan	
1	Lubang (LB)	105 m	2,333	82 m	1,822	37,5 m	0.833	
2	Retak memanjang (Rm)			15 m	0,333			
3	Retak kulit buaya (RKB)							
4	Gelombang (GB)	22,5 m	0,5			30 m	0,666	
5	Retak halus (RH)							
6	Tambalan (TB)					11,25 m	0,25	
7	Amblas (AB)			21 m	0,466			
	Jumlah	127,5 m	2,833 %	118 m	2,621 %	78,75 m	1,749 %	

Tabel 9. Kerusakan terjadi pada STA 29+20000 - STA 29+500

Volume 6, Nomor 1, April 2023

NO	Jenis kerusakan	Sta 29+2	Sta 29+200 - 29+300		Sta 29+300 - 28+400		Sta 29+400 - 29+500	
NU	Jenis Refusaran	Luas (m²)	% Kerusakan	Luas (m²)	% Kerusakan	Luas (m ²)	% Kerusakan	
1	Lubang (LB)	26 m	0,577	36,75 m	0,816	54 m	1,2	
2	Retak memanjang (Rm)	86 m	1,911			48 m	1,066	
3	Retak kulit buaya (RKB)							
4 5	Gelombang (GB) Retak halus (RH)					28 m	0,622	
6	Tambalan (TB)			10,5 m	0,233			
7	Amblas (AB)			21 m	0,466			
	Jumlah	112 m	2,488 %	68,25 m	1,515 %	130 m	2,888 %	

Dari korelasi antara DDT dengan CBR, dengan CBR 6% maka diperoleh besarnya harga DDT adalah 5,00.

c. Menentukan Kekuatan Relatif (a)

Koefisien kekuatan relative (a) masing masing bahan dan kegunaannya sebagai lapisan permukaan, pondasi, pondasi bawah, ditentukan secara korelasi sesuai Marshall Test (untuk bahan dengan aspal), kuat tekan (untuk bahan yang di stabilisasi dengan semen atau kapur), atau CBR (untuk bahan lapis pondasi bawah).

Kekuatan relatif ditentukan (a) berdasarkan pada bab II sebelumnya.Dari sebelumnya diperoleh koefisien kekuatan relatif (a) dengan jenis lapisan permukaan yaitu:

- 1. Koefisien kekuatan relatif a1 = 0,20 dengan kekuatan bahan 340 MS (Kg)
- 2. Koefisien kekuatan relatif a2 = 0,14 dengan kekuatan relatif bahan CBR 100% serta jenis batu pecah (kelas A)
- 3. Koefisien kekuatan relatif a3 = 0.13dengan kekuatan relatif bahan CBR 70% serta jenis bahan sirtu/pitrun (kelas A)

d. Menentukan Indeks Tebal Perkerasan (ITP)

Untuk mengetahui indeks tebal perkerasan (ITP) kita harus terlebih dahulu lintas ekivalen rencana (LER) kemudian menentukan factor regional serta daya dukung tanah dasar,kemudian kita plotkan nomogram

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i1.1096

- 1. Untuk umur rencana 20 tahunDari hitungan diatas diperoleh beberapa data untuk menentukan indeks tebal perkerasan. Adapun data-data untuk umur rencana 20 tahun yaitu:
- 1. Lalu lintas ekivalen rencana (LER) = 7.636
- 2. Daya dukung tanah dasar = 5,00
- 3. Faktor regional = 2.0

Tabel 10. Nilai Persentase Kerusakan

Persentase	Kategori	Nilai
< 5%	Sedikit Sekali	2
5% - 20%	Sedikit	3
20% - 40%	Sedang	5
> 40%	Banyak	7

Pada Tabel 4.6 dijelaskan bahwa persentase kerusakan 21,00% maka kategori kerusakannya sedang dan nilai kerusakannya 5.

Keadaan lalu lintas pada suatu ruas jalan akan dapat dipergunakan untuk mengevaluasi apakah jalan tersebut masih mampu melayani lalu lintas, dan dapat dipergunakan untuk menetukan kapasitas jalan menurut lebar dan jumlah lalu lintas harian rata-rata dalam satuan mobil penumpang (SMP) per jam.

Untuk Menghitung nilai prioritas kondisi jalan dengan menggunakan persamaan berikut Nilai prioritas =17 – (Kelas LHR+ Nilai Kondisi Jalan) = 17 – (3 +7)= 7 Untuk urutan prioritas 7menandakan bahwajalan tersebut dalam kondisirusak ringan sehingga cukup dimasukkan programpemeliharaan rutin.

Tabel 1. Rekapitulasi perhitungan nilai kondisi jalan (A, Khairul fajri, 2012)

Nilai
Kondisi
Jalan

Volume 6, Nomor 1, April 2023 p-ISSN : 2541-027X e-ISSN : 2774-9509

No	No.ruas	Nilai	Keterangan	Jenis
			C	pemeliharaan
				jalan
1	01	9	Baik	Pemeliharaan
				Rutin
2	02	7	Rusak	Pemeliharaan
			ringan	Rutin
3	03	7	Rusak	Pemeliharaan
			ringan	Rutin
4	04	6	Rusak	Pemeliharaan
			ringan	Berkala
5	05	3	Rusak berat	Peningkatan
				Jalan
6	06	3	Rusak berat	Peningkatan
				Jalan
7	07	6	Rusak	Pemeliharaan
			ringan	Berkala
8	08	8	Baik	Pemeliharaan
				Rutin
9	09	8	Baik	Pemeliharaan
				Rutin
10	10	5	Rusak	Pemeliharaan
			ringan	Berkala
11	11	8	Baik	Pemeliharaan
				Rutin

KESIMPULAN DAN SARAN

1. Kesimpulan

Berdasarkan hasil analisa yang dilakukan, maka dapat diperoleh beberapa kesimpulan,yaitu

- 1. Jenis kerusakan yang diperoleh yaitu: retak memanjang sebesar1,42%, retak halus sebesar6,81%,retak kulit buaya 0,76%,tambalan sebesar sebesar 1,00%, amblas sebesar1,16%,bergelombang sebesar 1,84% dan lubang sebesar 8,00% sehingga diperoleh persentase total kerusakan sebesar 21%. Dengan tersebut maka ienis persentase perbaikan kedepannya yang di lakukan yaitu pemeliharan rutin
- 2. Tebal perkerasan lenturun tukumur rencana 20 tahun kedepan yaitu, lapisan permukaan 5,00cm, lapisan

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i1.1096

pondasi atas 20,00 cm,lapisan pondasi bawah 10,00 cm.

DAFTAR PUSTAKA

- Adi, S, Analisa Tebal Perkerasan Lentur
 Dengan Metode
 AnalisaKomponen, AASHTO
 1993, dan AUSTROAADS 1992.
 Universitas Gadjah Mada 2011
 DepartemenPerhubungan,
 Departemen Dalam Negeri,
 Departemen Perindusteria, 1985,
 Penaggulangan Muatan Berlebih,
 Kriteria CBR untuk tanah dasar
 jalan, Trunbul,
- Alwendi, A. (2020). Sistem Pendukung Keputusan Kenaikan Jabatan menggunakan Metode Profile Matching (Studi Kasus PT. Beyf Bersaudara). Smart Comp: Jurnalnya Orang Pintar Komputer, 9(2), 99-104.
- Departemen Pekerjaan Umum, 1987,
 Petunjuk Perencanaan Tebal
 Perkerasan Lentur Jalan Raya
 Dengan Metode Analisa
 Komponen, Jakarta. epartemen
 Pekerjaan Umum, 1997, Manual
 Kapasitas Jalan
 Indonesia.Direktorat Jenderal
 Bina Marga, Jakarta.
- Departemen Pekerjaan Umum, 2006, Tentang Jalan Raya, Jakarta.Direktorat Jenderal Perhubungan Darat. 2008. Panduan Batasan Maksimum Perhitungan (Jumlah Berat Kombinasi Yang di Ijinkan, Untuk Mobil Barang, Kendaraan Khusus, Kendaraan Penarik

Volume 6, Nomor 1, April 2023 p-ISSN : 2541-027X e-ISSN : 2774-9509

- Berikut Kereta Tempelan/Kereta Gandengan.
- Direktorat jenderal bina marga, 2013; Manual desain perkerasan jalan, Jakarta Khairul A, F., 2012; Evaluasi Kerusakan Jalan Pada Ruas Jakan Desa Kuala Dua Dengan Metode Bina Marga, Skripsi, Universitas Tanjung pura.
- Putri, V, A,.2016, Identifikasi Jenis Kerusakan Pada Perkerasan Lentur, Skripsi, Universitas Lampung.
- Siti Hardianti, 2012, Studi Kerusakan Jalan Dan Cara Penanggulangannya Pada Jalan Metro Tanjung Bunga, Kota Makassar, Universitas Muslim Indonesia, Jurnal Ilmiah Teknik Sipil
- Samosir, K. (2022).

 PENGEMBANGAN DAN
 IMPLEMENTASI METODE
 FUZZY MAMDANI UNTUK
 PENILAIAN KINERJA
 PENELITIAN DOSEN. Jurnal
 Tekinkom (Teknik Informasi dan
 Komputer), 5(2), 333-340.
- SNI, 03-1744-1989, Metode Pengujian CBR Laboratorium. (SKBI 3.3. 30.1987/UDC 624.131.43 (02).Udiana, I, M,2014, Analisa Faktor Penyebab Kerusakan Jalan(studi kasus ruas jalan W, J. Lalamentik dan Ruas Jalan Gor Flobamora). FST UndanaKupang, Jurnal Teknik Sipil.