LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

Volume 6, Nomor 2, September 2023 p-ISSN: 2541-027X e-ISSN: 2774-9509

ANALISA KEMACETAN JALAN SUDIRMAN SIMPANG TIGA SADABUAN PADANGSIDEMPUAN

Nurazizah Siregar^{1*}, Ahmad Rafii², Wirna Arifitriana³

1,2,3 Teknik Sipil/Universitas Graha Nusantara Padangsidimpuan

Email: <u>azizahsr31@gmail.com</u>, <u>rafiia336@gmail.com</u> wirnaariv3ana@gmail.com

Abstrak

Arus lalu-lintas pada simpang tiga jalan sudirman sadabuan, sering mengalami konflik yang berujung pada terjadinya kemacetan. Persimpangan ini berada pada daerah pertokoan, perkantoran, pemukiman dan salah satu akses utama menuju komplek sekolah dengan hambatan samping sedang. Tujuan penelitian ini adalah menganalisis kemacetan simpang yang terjadi terhadap arus lalu lintas. Pengambilan data arus kendaraan dilaksanakan selama 7 hari pada pukul 06.30 wib sampai 18.30 wib, yaitu pada tanggal 7 November 2022 sampai dengan Minggu 13 November 2022. Data yang diambil adalah jumlah arus kendaraan, lebar jalan, dan jumlah penduduk. Data yang diperoleh kemudian dianalisis menggunakan MKJI (2017). Hasil analisis menunjukan bahwa kondisi simpang tiga jalan sudirman sadabuan saat ini memiliki kapasitas, (C) sebesar 2421.91 skr/jam, derajat kejenuhan (Dj) sebesar 0,66 skr/jam, dan tundaan (T) sebesar 11,74 det/skr serta rentang nilai peluang antrian QP (%) sebesar 18% - 37%. Sehingga simpang simpang tiga jalan sudirman sadabuan perlu adanya perbaikan dan peninjauan kembali.

Kata Kunci: Kemacetan Jalan, Simpang Tiga, Sadabuan

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

PENDAHULUAN

Perkembangan zaman pada saat ini membawa manusia kepada kesibukankesibukan dalam memenuhi kebutuhan masing-masing, manusia dituntut untuk menggunakan sarana transportasi yang dapat mengantarkan manusia ketempat tujuannya dengan cepat dan dengan biaya yang sedikit. Jalan merupakan sarana transportasi yang sangat penting, sehingga mendapat perhatian khusus dalam hal pembangunannya. Apabila ialur transportasi dalam kondisi baik, maka akan terjadi peningkatan pertumbuhan ekonomi masyarakat dan kesejahteraan masyarakat. dikatakan Transportasi baik apabila perjalanan cukup cepat, tidak mengalami kemacetan, frekuensi pelayanan cukup aman, bebas kemungkinan kecelakaan dan kondisi pelayanan yang nyaman. Kota Padangsidimpuan memiliki bebrapa titik simpul jalur transportasi dalam kondisi kurang memadai. Salah satu titik Kota kemacetan ada di yang Padangsidempuan adalah ruas Jalan Sudirman Simpang Tiga Sadabuan, banyaknya hambatan samping kendaraan yang melintas maupun kendaraan parkir dibahu jalan juga menambah masalah Tiga kemacetan. Simpang Sadabuan merupakan pertemuan beberapa ruas jalan dari atau menuju pusat Kota Padangsidempuan yang biasa dikatakan sebagai jalur ekonomi perdagangan, perkantoran dan pendidikan sehingga pada jam tertentu arus lalu lintasnya cukup sibuk. Berdasarkan keadaan tersebut maka persimpangan tiga Sadabuan ini perlu perhatian yang cukup besar agar arus lalu lintasnya dapat terlayani dengan baik dan

Volume 6, Nomor 2, September 2023 p-ISSN: 2541-027X e-ISSN: 2774-9509

tentunya meminimalkan terjadinya tundaan dan konflik pada kendaraan yang melintas dipersimpangan tersebut sehingga pengguna tidak merasa kerugian waktu dan biaya perjalanan. Secara garis besar penelitian ini bertujuan untuk mengetahui kapasitas dan tundaan hingga peluang antrian di Jalan Sudirman Simpang Tiga Sadabuan Kota Padangsidempuan.

1

LANDASAN TEORI

Kemacetan adalah kondisi dimana arus lalu lintas yang lewat pada ruas jalan yang ditinjau melebihi kapasitas rencana ialan tersebut yang mengakibatkan kecepatan bebas ruas jalan tersebut mendekati atau mencapai 0 km/jam, sehingga menyebabkan terjadinya antrian. Pada saat terjadinya kemacetan, nilai derajat kejenuhan mencapai lebih 0,5. Kemacetan lalu lintas di jalan terjadi karena ruas jalan yang sudah mulai tidak mampu lagi menerima atau melewatkan arus kendaraan yang datang. Hal ini terjadi karena pengaruh hambatan atau gangguan samping tinggi, sehingga yang mengakibatkan penyempitan ruas jalan seperti pejalan kaki, parkir di badan jalan, pangkalan ojek, kegiatan sosial yang menggunakan badan jalan (pesta atau kematian) dan lain-lain. Kemacetan sering terjadi pada persimpangan, pusat perbelanjaan, sekolah dan sarana public lainnya.

Persimpangan adalah suatu tempat dimana dua atau lebih ruas jalan bertemu atau bersilangan, termasuk didalamnya fasilitas jalan kendaraan dan pejalan kaki, untuk pergerakan lalu lintas yang menerus atau membelok. Persimpangan terbagi

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

kedalm dua jenis yakni simpang tak bersinyal dan simpang bersinya.

A. Jenis Konflik

Permasalahan utama yang dihadapi sebuah persimpangan adalah konflik antar berbagai pergerakan. Pergerakan ini dikelompokkan berdasarkan arah dan jumlah kaki pada persimpangan tersebut. Jenis-jenis konflik yang terjadi pada persimpangan adalah

- 1. Menyebar (Diverging),
- 2. Bergabung (Merging),
- 3. Perpotongan (Crossing),
- 4. Menyilang (Weaving),

B. Data Masukan Lalu Lintas

Data masukan lalu lintas diperlukan untuk dua hal, yaitu pertama data arus lalu lintas eksisting dan kedua data arus lalu lintas rencana. Data arus lalu lintas rencana digunakan sebagai dasar untuk menetapkan lebar jalur lalu lintas atau jumlah lajur lalu lintas, berupa arus lalu lintas jam desain (q_{jd}) yang ditetapkan dari LHRT, menggunakan faktor k. q_{jd} = LHRT x K (2.1)

Dengan:

LHRT = volume lalu lintas rata-rata tahunan, dapat diperoleh dari perhitungan lalu lintas atau prediksi, dinyatakan dalam skr/hari.

K = faktor K.

C. Kapasitas

Kapasitas Simpang dihitung untuk total arus yang masuk dari seluruh lengan Simpang dan didefinisikan sebagai perkalian antara kapasitas dasar (C₀) yaitu kapasitas pada kondisi ideal, dengan faktor-faktor koreksi yang memperhitungkan perbedaan kondisi lingkungan terhadap kondisi idealnya.

Volume 6, Nomor 2, September 2023 p-ISSN: 2541-027X

e-ISSN: 2774-9509

Untuk menentukan kapasitas biasanya di pakai Persamaan berikut ini.

$C = Co x F_{LP} x F_{M} x F_{UK} x F_{BKi} x F_{BKa} x$ $F_{Rmi} (skr/jam) 2.2)$

Dengan:

C = kapasitas Simpang (skr/jam)

 C_0 = kapasitas dasar Simpang (skr/jam)

FLP = faktor koreksi lebar rata-rata pendekat

FM = faktor koreksi tipe median

FUK = faktor koreksi ukuran kota

FHS = faktor koreksi hambatan samping FBKi = faktor koreksi rasio arus belok kiri FBKa = faktor koreksi rasio arus belok kanan FRmi = faktor koreksi rasio arus dari jalan minor.

TabelKapasitas dasar Simpang-3 dan Simpang-4 Berdasarkan Manual Kapasitas Jalan Indonesia Tahun 2017

Tipe Simpang	Kapasitas Dasar
	skr/jam
322	2700
342	2900
324 atau 344	3200
422	2900
424 atau 444	3400

Sumber : Manual Kapasitas Jalan Indonesia 2017

Inaonesia 2017

D. Derajat Kejenuhan

Derajat kejenuhan menunjukkan rasio arus lalu lintas pada pendekat tersebut terhadap kapasitas. Pada nilai tertentu, derajat kejenuhan dapat menyebabkan antrian yang panjang pada kondisi lalu lintas puncak. Derajat kejenuhan dapat di tentukan dengan menggunakan persamaan berikut.

$$Dj = q/c$$
 (2.3)

Dengan:

D_J= derajat kejenuhan q = semua arus lalu lintas yang masuk Simpang dalam satuan skr/jam.

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

E. Tundaan

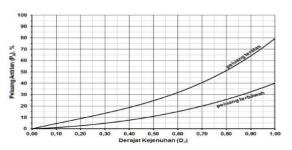
Tundaan terjadi karena dua hal, yaitu tundaan lalu lintas (TLL) dan tundaan geometrik (TG). adalah tundaan yang disebabkan oleh interaksi antara kendaraan dalam arus lalu lintas. Dibedakan TLL dari seluruh simpang, dari jalan mayor saja, atau jalan minor saja. TG adalah tundaan yang disebabkan oleh perlambatan dan percepatan yang terganggu saat kendaraankendaraan membelok pada suatu Simpang dan/atau terhenti. T dihitung menggunakan persamaan berikut. $T = T_{LL} + T_G$ (2.4)

Dengan:

TLL = Tundaan lalu lintas ratarata untuk semua kendaraan bermotor yang masuk

Simpang dari semua arah, dapat dihitung menggunakan

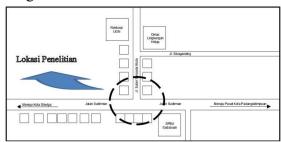
F. Peluang Antrian


Peluang antrian dinyatakan dalam rentang kemungkinan (%) dan dapat ditentukan menggunakan persamaan berikut atau ditentukan menggunakan Gambar berikut.

$$P_A = 47,71 D_j - 24,68 D_j^2 + 56,47$$

 D_j^3 (2.5)
 $P_A = 9,02 D_j - 20,66 D_j^2 + 10,49$
 D_j^3 (2.6)
Dengan:

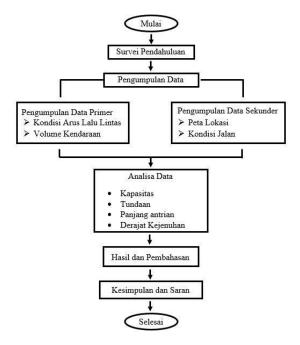
D_i = Derajat Kejenuhan


Volume 6, Nomor 2, September 2023 p-ISSN: 2541-027X

e-ISSN: 2774-9509

Gambar Peluang Antrian (PA, %) Pada Simpang Sebagai Fungsi Dari DJ. METODEOLOGI PENELITIAN

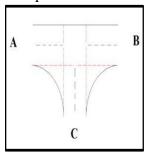
Penelitian ini dilaksanakan di Kota Padangsidempuan tepatnya di kecamatan Padangsidempuan Utara. Penelitian dan penulisan skripsi ini dilaksanakan dan dikerjakan kurang lebih selama 1 bulan yang dimulai dari bulan Oktober sampai dengan bulan November 2022.

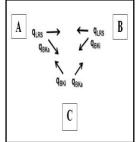

Gambar Lokasi Penelitian

Data-data yang diperlukan dalam hasil penelitian dengan judul "Analisa Kemacetan Jalan Sudirman Simpang Tiga Padangsidempuan" Sadabuan terbagi menjadi dua, yaitu: data primer dan data sekunder. Data primer yang didapat melalu pengumpulan data yang dilakukan adalah tenik observasi yaitu suatu cara pengumpulan data melalui pengamatan dan pencatatan segala yang tampak pada objek penelitian yang pelaksanaannya dapat dilakukan secara langsung pada tempat dimana suatu peristiwa atau kejadian terjadi. Adapun alat yang digunakan dalam pengamatan ini yaitu peralatan manual,

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

untuk yang paling sederhana yaitu dengan mencatat lembar formulir survei. Data yang dikumpulkan antara lain data volume lalu lintas dan data kondisi jalan. Sedangkan Data sekunder merupakan data pendukung yang dipakai dalam proses penyusunan hasil penelitian, data data yang termasuk dalam data sekunder antara lain: buku tentang lalu lintas, buku tentang transportasi, serta jurnal publikasi tentang jalan raya dan kemacetan serta persimpangan.


Untuk mempermudah peneliti dalam melakukan penelitian, maka dibuat bagan alir penelitian. Adapun tahapan penelitian dapat kita lihat pada gambar bagan alir berikut ini.



Gambar Diagram Alir Penelitian HASIL DAN PEMBAHASAN

Data volume lalu lintas simpang yang dikumpulkan dari lapangan dilakukan selama satu minggu. Untuk keperluan perhitungan digunakan data volume dari Volume 6, Nomor 2, September 2023 p-ISSN: 2541-027X e-ISSN: 2774-9509

jam 06.30 Wib. sampai dengan 18.30 Wib. setiap hari selama satu minggu.

Gambar Sketsa Simpang 3 Sadabuan Lokasi Penelitian Perilaku Pergerakan Kendaraan/Arus Lalu Lintas

Berdasarkan data pemantauan lapangan diperoleh volume lalu lintas pada persimpangan seperti tabel dibawah ini.

Data Volume Lalu Lintas Dari Arah Pusat Kota Padangsidempuan (Titik A)

										U			,	
	Toris	Arus						W	aktu					
Han	Jenis Kendaraan	Lalu	06.30-	07.30-	08.30-	09.30-	10.30-	11.30-	12.30-	13.30-	14.30-	15.30-	16.30-	17.30
	Velinarasii	Lintas	07.30	08.30	09.30	10.30	11.30	12.30	13.30	14.30	15.30	16.30	17.30	18.3
	SM	Bki												
	ekr 0.5	Ls	120.5	106.5	87.5	61.5	83.5	94.5	107.5	84.5	96	71.5	83.5	49
	eki v,j	Bka	188	155	122.5	131.5	71.5	77.5	114	104.5	108	157.5	77	87.5
	KR	Bki												
Senin	ekr 1,0	Ls	52	65	68	71	76	78	69	82	63	67	85	68
Ś	ext 1,0	Bka	65	68	59	60	59	65	73	66	65	62	65	61
	KS	Bki												
	ekt 1.3	Ls	35.1	45.5	52	36.4	49.4	48.1	45.5	45.5	35.1	35.1	40.3	35.1
	CT 173	Bka	13	0	2.6	0	5.2	15.6	2.6	0	5.2	0	0	2.6
	7.0	Bki												
	SM ekr 0,5	Ls	101.5	107.5	125.5	120.5	106.5	156	139	93.5	94.5	77	78	87.5
	CEI U,J	Bka	189.5	178	125.5	120.5	106.5	156	139	93.5	94.5	77	78	87.5
8	KR	Bki												
Selasa	ekr 1,0	Ls	73	71	67	59	63	85	83	67	69	66	81	71
Š	ear 1,0	Bka	56	63	47	49	45	47	54	49	46	45	49	42
	770	Bki												
	KS - ekr 1,3 -	Ls	9.1	10.4	11.7	15.6	26	35.1	27.3	22.1	18.2	22.1	15.6	14.3
	ekī 1,5	Bka	0	13	0	2.6	13	0	1.3	0	3.9	5.2	2.6	3.9
		Bki												
	SM	Ls	102.5	108	126	121.5	107.5	157	139.5	94.5	95.5	78	78.5	88
	ekr 0,5	Bka	190.5	178.5	126	121.5	107	157	139.5	94	95.5	77.5	79	88.
		Bki												
Rabu	KR.	Ls	74	72	70	62	66	86	84	68	70	67	84	80
\simeq	ekr 1,0	Bka	58	62	46	51	44	46	56	51	48	44	48	41
		Bki												
	KS	Ls	9.1	11.7	13	15.6	26	36.4	27.3	22.1	16.9	22.1	16.9	13
	ekr 1,3	Bka	0	2.6	0	3.9	2.6	1.3	2.6	0	5.2	6.5	3.9	5.2
		Bki												
	SM	Ls	102.5	108	126.5	121.5	107	157	139.5	94	95.5	77.5	79	88
	ekr 0,5	Bka	190	179	126	121.5	107	157	139.5	94	95.5	77.5	78.5	88.5
S		Bki												
Kamis	KR	Ls	71	72	68	57	61	83	84	68	70	64	82	75
Ž	ekr 1,0	Bka	54	64	48	47	46	45	52	50	44	43	50	40
	****	Bki												
	KS	Ls	11.7	13	11.7	15.6	26	35.1	26	20.8	16.9	24.7	18.2	16.9
	ekr 1,3	Bka	0	2.6	0	2.6	13	0	13	0	3.9	6.5	2.6	3.9
	63.5	Bki												
	SM	Ls	104.5	101.5	122.5	120.5	106.5	182.5	156	93.5	94.5	77	78	87.5
Ħ	ekr 0,5	Bka	184	176.5	125	119	100.5	167.5	156	54	95.5	72.5	77.5	87.5
Jumat		Bki		219.2			****	241.2						97
7	KR.	Ls	75	69	69	57	65	87	83	65	71	68	79	79
	ekr 1,0	Bka	58	61	49	47	47	47	54	51	48	43	51	40
		Date	Jo	Vi	77	7/	7/	71	.77	71	70	72	J1	40

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

		Bki												
	KS	Ls	10.4	10.4	7.8	11.7	26	35.1	27.3	18.2	19.5	18.2	16.9	14.3
	ekt 1,3	Bka	0	13	0	2.6	13	0	1.3	0	3.9	5.2	2.6	3.9
	SM	Bki												
	ekr 0.5	Ls	103	106.5	127	119.5	108	155	138	92.5	96	76	77	86.5
	CALV,J	Bka	188.5	177	127	119.5	108	157.5	138	92.5	96	76	77	89
2	KR	Bki												
Sabtu	ekt 1,0	Ls	72	69	65	58	63	85	82	66	67	64	81	77
vo .	CAL 1,V	Bka	54	62	45	48	45	47	52	47	45	45	47	42
	KS	Bki												
	ekr 1.3	Ls	9.1	10.4	11.7	15.6	26	32.5	27.3	22.1	18.2	22.1	14.3	14.3
	ÇI L	Bka	0	13	0	2.6	13	0	13	0	3.9	52	2.6	3.9
	SM	Bki												
	ekr 0,5	Ls	45.5	48.5	56.5	54	48	70	62.5	42	42.5	34.5	35	39.5
	- Car u,J	Bka	47.5	48.5	46.5	49	48	70	62.5	42	42.5	34.5	35	39.5
120	KR	Bki												
Minggu	ekt 1,0	Ls	35	34	32	29	31	40	41	33	34	32	40	38
Σ	CB1 1,0	Bka	27	24	25	28	31	40	41	33	46	27	24	22
	KS	Bki												
	ekt 1,3	Ls	9.1	10.4	11.7	15.6	26	35.1	27.3	22.1	18.2	22.1	15.6	14.3
	(ii ij	Bka	0	13	0	2.6	13	0	1.3	0	3.9	52	2.6	3.9

Data Volume Lalu Lintas Dari Arah Pusat Kota Sibolga (Titik B)

Han	Jenis Kendaraan	Lalu	06.30-	07.30-	08.30-	09.30-	10.30-	11.30-	12.30-	13.30-	14.30-	15.30-	16.30-	17.30-
		Lintas Bki	07.30 182.5	08.30 207.5	09.30 107.5	10.30	11.30 87.5	12.30 91	13.30 96.5	14.30 93.5	15.30 84	16.30 79.5	17.30 49	18.30 96
	SM ekr 0.5	Ls	83	86.5	123	125	132.5	134	118	102	97	45.5	89	58
		Bka	68	71	52	47	44	56	49	51	43	46	53	43
Senin	KR.	Bki Ls	50	67	65	73	88	90	74	93	65	66	96	70
Š	ekr 1,0	Bka												
	KS	Bki	2.6	13	3.9	2.6	3.9	5.2	2.6	7.8	18.2	22.1	15.6	16.9
	ekr 1,3	Ls Bka	6.5	11.7	23.4	29.9	32.5	35.1	32.5	29.9	20.8	36.4	40.3	45.5
	SM	Bki	155	159.5	88	83.5	94.5	115.5	194.5	94	83.5	81.5	83.5	64.5
	ekr 0.5	Ls	80.5	96	93	124	123.5	95	131	71.5	87	48	76	51
		Bka Bki	57	53	54	51	59	56	53	57	55	57	54	46
Selasa	KR.	Ls	63	74	63	68	72	82	73	76	64	73	69	70
Ø.	ekr 1,0	Bka												
	KS	Bki	0	0	1.3	0	0	1.3	1.3	0	13	0	6.5	7.8
	ekr 1,3	Ls Bka	3.9	6.5	11.7	20.8	24.7	35.1	19.5	23.4	13	29.9	39	37.7
	SM	Bki	155.5	160.5	88.5	84	95.5	116	195	95	84.5	82	84.5	65
	ekr 0,5	Ls	81	96.5	92.5	124	123.5	95	130.5	71.5	86.5	47.5	76	51
		Bka Bki	56	55	56	50	61	55	55	56	54	59	56	48
Rabu	KR ekt 1.0	Ls	60	77	63	65	75	79	73	79	64	70	72	73
2	- ext 1,0	Bka												
	KS	Bki Ls	5.2	0 5.2	2.6	0 23.4	0 26	2.6 36.4	2.6 16.9	1.3 24.7	2.6	0 32.5	6.5 37.7	7.8
	ekr 1,3	Bka		- /	10.7	23.4	20	20.7	10.7	27.7	- 12	32.3	21.1	21.1
	SM	Bki	156	160	89	84	95.5	116	195.5	94.5	84	82.5	84.5	65
	ekr 0,5	Ls Bka	80	96	93.5	123.5	123.5	95.5	130.5	72	86.5	48.5	75.5	51.5
on.		Bki	58	51	52	52	57	57	54	55	56	55	52	47
Kamis	KR ekt 1,0	Ls	60	77	66	65	72	85	70	79	61	76	72	67
×	Cal 1,0	Bka	2.6			_	٨	- 12	- 12		- 12	10	/:	7.0
	KS	Bki Ls	2.6	9.1	1.3	16.9	24.7	1.3 33.8	1.3	22.1	13	3.9	6.5 35.1	7.8
	ekt 1,3	Bka		7.1		10.7			10.2			20	22.1	24.1
	SM	Bki	160.5	161	84	88.5	96	194.5	116.5	48.5	77.5	78.5	86	65.5
	ekr 0,5 KR ekr 1.0	Ls Bka	72.5	94	90.5	120.5	123.5	164	96.5	55	67	45.5	82.5	48.5
		Bki	55	55	52	53	57	58	53	55	53	55	52	48
Jumat		Ls	59	78	59	64	76	82	73	76	60	77	73	66
_		Bka	0	0	1.3	0	0	1.3	1.3	0	13	0	6.5	7.8
	KS	Bki Ls	5.2	7.8	14.3	16.9	20.8	31.2	19.5	23.4	13	26	35.1	33.8
	ekr 1,3	Bka												
Sabtu	SM	Bki	156.5	161	87	85	93.5	114.5	196	95.5	82.5	83	85	63.5
- S	ekr 0,5	Ls	78	96	95.5	121.5	126	97.5	128.5	69	89.5	50.5	73.5	53.5
		-												
		Bka	.,	-				-						
	KR	Bki	56	51	53	50	57	54	52	57	53	55	53	44
	ekr 1.0	Ls	64	75	62	67	73	81	74	75	65	74	68	69
		Bka												
	KS -	Bki	0	0	13	0	0	13	1.3	0	13	0	6.5	7.8
	ekr 1.3	Ls	7.8	10.4	11.7	24.7	22.1	32.5	19.5	23.4	13	29.9	36.4	35.1
	,	Bka							40.5		40.5	147		
	SM	Bki	49	55	39.5	37.5	42.5	52	87.5	42.5	37.5	36.5	37.5	29
	ekr 0.5	Ls	36	37.5	42	56	51.5	43	62.5	32	39	21.5	34	21
		Bka												
39	KR.	Bki	35	34	32	29	23	27	24	25	28	32	29	31
Minggu	ekr 1.0	Ls	26	30	27	28	30	34	31	29	28	30	29	33
Σ	Van aye	Bka												
	KS -	Bki	0	0	13	0	0	13	1.3	0	13	0	6.5	7.8
	ekr 13	Ls	3.9	6.5	11.7	20.8	24.7	35.1	19.5	23.4	13	29.9	39	37.7
	rei 1,J	Bka												

Volume 6, Nomor 2, September 2023 p-ISSN: 2541-027X e-ISSN: 2774-9509

Data Volume Lalu Lintas Dari Arah Komplek Sekolah (Titik C)

. 11	all .	ΙΣU	1111	pic	N L	JUN	1014	am	(1	llir	, C	Ι,		
	Jenis	Arus						Wa	ktu					
Han	Jems Kendaraan	Lalu	06.30-	07.30-	08.30-	09.30-	10.30-	11.30-	12.30-	13.30-	14.30-	15.30-	16.30-	17.30-
	Venoaraan	Lintas	07.30	08.30	09.30	10.30	11.30	12.30	13.30	14.30	15.30	16.30	17.30	18.30
		Bki	154.5	54.5	115.5	130.5	31	187.5	154.5	126.5	143.5	87.5	94.5	56
	SM ekr 0.5	Ls												
	ext u,o	Bka	183	146.5	79	65	166.5	217	193	145	46	50	52	38.5
_		Bki	56	63	61	59	62	64	61	58	63	61	59	57
Senin	KR	Ls												
ď	ekī 1,0	Bka	46	49	47	56	51	56	57	57	56	53	54	46
		Bki	0	0	13	2.6	0	0	0	0	1.3	0	0	2.6
	KS	Ls	_	<u> </u>		2.0	Ť	_	_	_		_	_	
	ekr 1,3	Bka	2.6	13	3.9	6.5	0	0	0	6.5	2.6	2.6	13	9.1
		Bki	155	48.5	135.5	132.5	94.5	115.5	194.5	156	148.5	81.5	83.5	64.5
	SM	Ls	100	40.7	133.3	132.3	24.J	113.3	174.J	130	140.7	01.J	03.3	04.7
	ekt 0,5		87.5	72	105	103	112	68.5	187.5	101	86.5	50.5	53.5	61.5
		Bka											49	
18	KR	Bki	45	52	51	49	56	63	59	53	57	54	49	52
Selasa	ekr 1,0	Ls											-	
92		Bka	56	50	51	50	49	65	63	43	47	55	54	53
	KS	Bki	0	13	0	2.6	2.6	0	0	0	2.6	1.3	0	0
	ekr 1.3	Ls												
	بدست	Bka	2.6	0	2.6	13	3.9	2.6	0	13	1.3	0	13	0
	SM	Bki	155.5	49	136.5	133.5	95	116.5	195.5	156.5	149.5	82.5	84.5	65.5
	ekr 0.5	Ls												
	CM NO	Bka	87	72.5	105.5	103	111.5	68	187.5	100.5	86.5	50	54	62
	מע	Bki	47	51	53	51	55	65	61	52	59	56	48	51
Rabu	KR	Ls												
\simeq	ekr 1,0	Bka	58	50	49	48	47	67	65	45	47	57	52	51
		Bki	0	13	0	13	13	0	13	0	1.3	0	2.6	13
	KS	Ls	_			1.7				_				
	ekt 1,3	Bka	13	0	0	0	5.2	0	1.3	2.6	2.6	0	0	13
		Bki	156	49	136	133.5	95	116	195.5	156.5	149.5	82	84.5	65
	SM	Ls	130	*77	130	133.3	21	110	177.7	DVJ	197.3	02	07.7	V)
	ekr 0,5	Bka	87	72.5	104.5	103	112.5	68	188	101.5	86	51	53	62
			46		49	50						52	47	53
S S	KR	Bki	40	50	49	JU _	54	61	60	51	58	32	4/))
Kamis	ekr 1,0	Ls								40	44			-,,
-		Bka	59	47	48	53	52	68	60	40		58	51	56
	KS	Bki	0	13	0	5.2	13	0	0	0	1.3	3.9	2.6	0
	ekr 1.3	Ls												
		Bka	2.6	0	1.3	0	2.6	1.3	0	2.6	2.6	2.6	13	0
	SM	Bki	156	54.5	132.5	128.5	94.5	218.5	151	51.5	148.5	82	76.5	67
	ekr 0.5	Ls												
	Can v,J	Bka	73.5	68	111	103	112	188.5	68.5	101	86.5	50.5	53.5	61.5
=	KR	Bki	47	50	53	51	54	65	59	55	59	52	47	54
Jumat	ekt 1,0	Ls												
5	ex1 1,0	Bka	52	54	47	54	49	65	63	47	43	51	58	49
	***	Bki	0	13	0	2.6	2.6	0	0	0	2.6	1.3	0	0
	KS	Ls												
	ekt 1,3	Bka	13	0	6.5	13	5.2	2.6	0	6.5	0	5.2	0	0
		Bki	156.5	50	134.5	134	93.5	114.5	196	157.5	147.5	80.5	85	63.5
	SM	Ls												
_	ekr 0,5	Bka	85	74.5	102.5	105.5	109.5	71	190	103.5	84	53	53.5	64
Sabtu		Bki	43	50	50	48	54	62	57	52	55	52	48	51
Sa	KR	Ls	40	м	JV	-10	- 1	44	21		23	22	70	71
	ekr 1,0	Bka	55	51	52	50	48	64	62	42	47	56	52	51
	KS	Bki	0	13	0	2.6	2.6	04	02	42 0	2.6	13	0	0
	t/2	DÉI	U	1.3	U	2.0	2.0	U	U	Ű	2.0	1.3	Ú	U
	ekr 1.3	Ls												
		Bka	45.5	52	36.4	49.4	48.1	45.5	45.5	35.1	35.1	40.3	35.1	0
		Bki	31	27.5	60.5	59	46.5	51.5	83.5	70	66.5	36.5	37.5	39
	SM		31	21.3	00.3	Jy	40.3	JLJ	83.3	/0	00.3	30.)	31.)	39
	ekr 0,5	Ls												
		Bka	39.5	32.5	47	46.5	50.5	31	84.5	45.5	39	23	24	27.5
		Bki	23	27	24	25	28	31	28	29	26	27	24	22
nã.	מע													
nāāu	KR T	Ls												
Minggu	KR ekr 1,0	Ls	23	20	21	21	20	27	24	17	18	24	21	21
Minggu	ekr 1,0	Ls Bka	23	20	21	21	20	27	24	17	18	24	21	21
Minggu		Ls Bka Bki	23	20 13	21 0	21 2.6	2.6	27 0	24 0	17 0	18 2.6	24 1.3	21	21
Minggu	ekr 1,0	Ls Bka												

Penentuan nilai kapasitas simpang meliputi faktor lebar pendekat, tipe simpang dan faktor penyesuaian kapasitas, yaitu sebagai

berikut. Digunakan data pada hari Jum'at, 11

November 2022, periode jam puncak siang (11.30 – 12.30). Data ini dianggap mewakili

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

data-data lainnya karena mempunyai volume arus lalulintas tertinggi (jam puncak tertinggi).

Tabel Hasil Analisa Kapasitas (C) Persimpangan Jalan Sudirman Simpang Tiga Sadabuan

C			Faktor Pe	enyesuaian	Kapasitas			
C ₀ -	FLP	FM	F_{UK}	F_{HS}	F_{Bhi}	F_{Bka}	F_{Rmi}	
2700	1,03	1	0,88	0,94	1,40	0,80	0,91	2344,61

Tabel Hasil Analisa Kinerja dan Perilaku Persimpangan Jalan Sudirman Simpang Tiga Sadabuan

					Peluang An					
Q	DJ	T_{LL}	T_{LLma}	$T_{LL mi}$	TG	T	(9	%)		
(skr/Jam)	Dί	(det/skr)	(det/skr)	(det/skr)	(det/skr)	(det/skr)	Batas	Batas		
							Atas	Bawah		
1589,7	0,67	7,41	4,8	14,9	4,33	11,74	36,97	17,96		

Berdasarkan analisa di dapati nilai derajat kejenuhan pada persimpangan didapati dengan nilai sebesar 0,67 skr/jam, dan tundaan sebesar 11,74 det/skr serta rentang nilai peluang antrian QP (%) sebesar 18% - 37%.

KESIMPULAN

Berdasarkan hasil pengolahan data dan analisa kemacetan ruas jalan Sudirman Simpang Tiga Sadabuan yang diperoleh, maka dapat ditarik beberapa kesimpulan sebagai berikut:

1. Berdasarkan kapasitas simpang sebesar 2421.91 skr/jam dengan arus lalu lintas 1589,7 skr/jam apabila dibandingkan dengan kapasitas dasar simpang yang memiliki 2700 skr/jam. Dan Derajat Kejenuhan pada persimpangan didapati dengan nilai sebesar 0,67 skr/jam, dan tundaan sebesar 11,74 det/skr serta rentang nilai peluang antrian QP (%) sebesar 18% - 37%.

Volume 6, Nomor 2, September 2023 p-ISSN: 2541-027X e-ISSN: 2774-9509

- 2. Berdasarkan analisa data lapangan maka penyebab utama kemacetan jalan suirman simpang simpang tiga sadabuan antara lain:
 - a. Kapasitas simpang telah mendekati kapasitas dasar simpang
 - b. Terjadinya tundaan pada setiap kendaraan akibat konflik yang terjadi pada persimpangan berupa penyebaran kendaraan, bergabungnya kendaraan, hingga berpotongan maupun menyilang antar kendaraan.

c.

DAFTAR PUSTAKA

Adinugraha, A. (2019). Evaluasi Kinerja Simpang Tak Bersinyal (Studi Kasus Jl. Tambun Bungai–Jl. RA Kartini, Kota Palangkaraya, Kalimantan Tengah) (Doctoral dissertation, ITN Malang).

Bahari, S. (2017). Analisis Kemacetan Simpang Tiga Tak Bersinyal di Jalan Klambir 5–Jalan Stasiun Lama Medan (Studi Kasus) (Doctoral dissertation).

Highway Capacity Manual, 1985, Special Report 206, Transportation Research Board, Washington D.C.: National Research Council.

Kementerian Pekerjaan Umum, 1999, Jenderal Bina Marga No. 76/KPTS/Db/1999, Pemeliharaan Rutin Jalan Bina Marga, Departemen Pekerjaan Umum, Jakarta.

Kementerian Pekerjaan Umum, 2017, Direktorat Jenderal Bina Marga, Manual Kapasitas Jalan Indonesia

LPPM Universitas Graha Nusantara https://jurnalugn.id/index.php/statika
DOI https://doi.org/10.64168/statika.v6i2.1285

(MKJI), 201. Departemen

Volume 6, Nomor 2, September 2023

p-ISSN: 2541-027X

e-ISSN: 2774-9509

Morlok E.K (1981). Pneumo-capsule Pipelines as an Inovation in Transportation. Netherlands.

Pekerjaan Umum. Jakarta.

- Sembiring, A. T. B., Maki, T., & Delarue, J. (2021). Analisis Kinerja Lalu Lintas Terhadap Pengoperasian Angkutan Umum Di Ruas Jalan Santiago. Jurnal Ilmiah Media Engineering, 11(3).
- Waris, M. (2018). Analisis Kinerja Simpang Tak Bersinyal Metode Pedoman Kapasitas Jalan Indonesia 2014. J-HEST Journal of Health Education Economics Science and Technology, 1(1), 46-54.