DOI: https://doi.org/10.64168/statika.v7i1.1385

ANALISIS PERBANDINGAN BIAYA DAN WAKTU PELAKSANAAN PERANCAH KAYU (KONVENSIONAL) DAN PERANCAH BESI (SCAFFOLDING)

Zahrona¹,Mhd. Rahman Rambe²,Afniria Pakpahan³

Teknik Sipil, Universitas Graha Nusantara Padangsidimpuan

Email: zrona252@gmail.com

Abstrak: Perancah adalah konstruksi yang memikul atau menerima beban dan memberi kekuatan serta kesetabilan pada bekisting. Dimana perancah memegang peranan penting agar beton tidak terjadi lendutan. Berdasarkan sifatnya, perancah terbagi menjadi dua, yaitu perancah bersifat fabrikasi seperti perancah scaffolding dan perancah bersifat konvensional seperti perancah kayu. Adapun tujuan yang ingin dicapai dalam penulisan skripsi ini adalah untuk mengetahui berapa besar perbandingan biaya dan waktu pelaksanaan perancah kayu (konvensional) dengan perancah besi (scaffolding). Metode yang digunakan untuk menghitung biaya dan waktu pada pekerjaan perancah kayu (konvensional) dengan perancah besi (scaffolding) adalah analisa harga satuan pekerjaan (AHSP)2022. Lokasi dan tempat pengambilan data untuk kebutuhan penelitian ini dilakukan di Gedung Promosi dan Museum Tapanuli Selatan, dengan data yang dikumpulkan berupa gambar kerja, daftar upah kerja, dan daftar harga bahan. Dari hasil analisa data yang dilakukan, dapat diambil kesimpulan bahwa biaya yang dibutuhkan untuk pelaksanaan perancah kayu (konvensional) adalah Rp. 302.185.516,00 sedangkan biaya untuk perancah besi (scaffolding) sebesar Rp. 166.814.308,00. Selisih biaya dari perancah kayu (konvensional) dan perancah besi (scaffolding) yaitu sebesar Rp. 135.371.208,00. Waktu pelaksanaan untuk pekerjaan perancah kayu (konvensional) dibutuhkan selama 49 hari, sedangkan waktu pelaksanaan perancah besi (scaffolding) selama 10 hari dengan jumlah tukang antara keduanya sama sebanyak 10 orang. Dan selisih waktu pelaksanaan antara perancah kayu (konvensional) dengan perancah besi (scaffolding) yaitu sebesar 39 hari, dimana waktu pekerjaan perancah kayu (konvensional) dan perancah besi (scaffolding) dihitung dengan menggunakan AHSP koefisien eaktu pekerjaan per m3 dengan satuan OH.

Kata Kunci: Waktu, Biaya, Perancah Kayu (Konvensional), Perancah Besi (Scaffolding)

PENDAHULUAN

Seiring Perkembangan pembangunan proyek konstruksi di Indonesia pada masa kini kian pesat. Hal ini dapat dilihat melalui pembangunan seperti gedung-gedung bertingkat yang semakin banyak, juga program pemerintah yang berkonsentrasi pada infrastruktur dan sarana bagi masyarakat terutama pada provek konstruksi. Agar proyek dikatakan berhasil, dalam pembuatan bangunan proyek dibutuhkan pertimbangan konstruksi mengenai tenaga kerja konstruksi, mesin atau alat, dan material yang dibutuhkan.

Salah satu komponen penting dalam pengerjaan struktur yang perlu diperhatikan adalah perancah, karena komponen ini dipakai dari awal hingga akhir proyek, dimana perancah memegang penting agar beton tidak terjadi lendutan. Perancah adalah konstruksi yang memikul atau menerima beban dan memberi kekuatan serta kesetabilan pada bekisting. perancah Berdasarkan sifatnya, terbagi perancah menjadi dua, vaitu bersifat fabrikasi seperti perancah scaffolding dan bersifat konvensional perancah seperti perancah kayu. Sebagian besar memilih perancah scaffolding dikarenakan konstruksi yang lebih praktis yang tidak https://jurnal.ugn.ac.id/index.php/statika

DOI: https://doi.org/10.64168/statika.v7i1.1385

membutuhkan banyak tenaga kerja. Sedangkan untuk perancah konvensional dikarenakan oleh sifat kekuatan dan ukuran yang tersedia di lapangan

TINJAUAN PUTAKA Pengertian Pencacah

Perancah adalah bangunan peralatan yang dibuat untuk sementara dan digunakan sebagai penyangga tenaga kerja, bahandan alat-alat pada pekerjaan bahan. Perancah konstruksi bangunan. juga didefenisikan sebagai konstruksi yang memikul atau menerima beban dan memberi kekuatan serta kesetabilan pada bekisting. Perancah juga bisa disebut sebagai alat bantu konstruksi pada pekerjaan bangunan gedung. Alat ini dibuat apabila pekerjaan bangunan gedung sudah mencapai ketinggian dua meter dan tidak dapat dijangkau oleh pekerja. Perancah adalah konstruksi dari batang bambu, kayu, atau pipa baja (scaffolding) yang didirikan ketika suatu gedung sedang dibangun untuk menjamin tempat kerja yang aman bagi tukang yang membangun gedung, memasang sesuatu atau mengadakan pekerjaan pemeliharaan (Heinz, Frick & Setiawan, 2007). Kebutuhan akan kegiatan perancah dalam membangun bangunan terutama konstruksi sebuah bertingkat atau gedung sangatlah penting karena perancah berfungsi untuk menyangga beban, baik manusia maupun material pada saat melakukan pengerjaan bangunan. Serta berfungsi sebagai jalan para pekerja konstruksi dalam melakukan pekerjaannya.

Penggunaan Perancah

Perancah adalah struktur sementara yang digunakan untuk menyangga manusia dan material dalam kegiatan konstruksi. Ada beberapa hal penting yang harus dilakukan dalam penggunaan perancah, adalah:

a. Distribusi gaya muatan untuk perancah harus merata, untuk mencegah bahaya dan menjaga keseimbangan.

- b. Dalam penggunaan perancah, harus dijaga bahwa beban/gaya muatan tidak boleh melebihi kapasitas yang ditentukan (over loaded).
- c. Perancah tidak boleh dipakai untuk menyimpan bahan-bahan (material) kecuali bahan-bahan yang akan segera dipakai/dipasang.
- d. Karyawan tidak boleh bekerja di dekat bangunan perancah sewaktu angin kencang.
- e. Kejutan gaya yang besar tidak boleh dibebankan kepada perancah

Prosedur Pemasangan Dan Pembongkaran Perancah

Berikut ini adalah persyaratan umum yang harus diatasi ketika melakukan perencanaan dan pemasangan perancah:

- a. Perancah diperlukan setiap kali bekerja diatas dimana tidak dapat dilakukan dengan aman bila menggunakan tangga.
- b. Perancah dan komponen-komponennya akan tanpa runtuh, dapat membawa setidaknya 4 kali maksimum yang diizinkan beban kerja. Jangan Overload
- c. Penggunaan perancah yang tidak vertikal dilarang.
- d. Material dari perancah yang digunakan harus dalam kondisi baik dan diperiksa dengan teratur.
- e. Hal ini tidak diizinkan untuk menghilangkan bagian dari perancah tanpa persetujuan terlebih dahulu.
- f. Perancah tidak akan bersandar atau menggantung dipagar yang dapat dipindahkan dengan mudah.
- g. Tangga dan perangkat lain untuk mendapatkan ketinggian tidak boleh digunakan diatas perancah.
- h. Perancah yang harus dibangun di atas permukaan yang datar dimana mampu mendukung berat maksimum dimaksudkan.
- i. Untuk perancah yang akan didirikan di

https://jurnal.ugn.ac.id/index.php/statika

DOI: https://doi.org/10.64168/statika.v7i1.1385

- kisi-kisi, standar harus berlapis untuk mendistribusikan berat.
- j. Perlindungan terhadap cuaca, seperti lembaran/kelambu tidak akan terikat dengan ketinggian perancah kecuali dijamin dengan struktur independent yang mampu menahan pekerja oleh angin.

Cara Penyambungan Perancah

Dibawah ini akan menjelaskan dengan singkat bagaimana cara penyetelan scaffolding dan cara penyambungan sebagai berikut:

- a. Menentukan letak darri scaffolding atau mengatur jarak scaffolding misalnya as balok pada pekerjaan bekisting balok.
- b. Memasangan base plat atau jack base diatas landasan yang stabil.
- c. Menyetel kerangka (frame).
- d. Dilanjutkan dengan memasang cross brace pada dua sisi agar elemen perancah dapat berdiri dengan baik.
- e. Selanjutnya menyusun frame vertikal berikutnya atau selesai dengan pemasangan shoring head jika ketinggian perancah dianggap cukup, artinya ketinggian dapat dilakukan dengan mengatur jack dan u-head.
- f. Ketinggian perancah diatur sesuai dengan ketinggian bekisting yang telah direncanakan

Cara Pembongkaran Perancah

Didalam pembongkaran perancah dalam kegiatan konstruksi memiliki tahapan atau langkahlangkah pembongkaran yang harus diketahui. Langkah-langkah pembongkaran perancah adalah sebagai berikut :

a. Didahului dengan penurunan head pada bagian tengah bentangan atau daerah momen terbesar kearah tepi, untuk menghindari penurunan mendadak.

- b. Dilanjutkan dengan pembongkaran frame scaffolding.
- c. Jika dibutuhkan sebagai perancah pada saat pembongkaran bekisting cetak maka frame lapis pertama tidak dibongkar.
- d. Selanjutnya melepas join pin dan cross brace.

Persyaratan Perancah

Adapun tuntutan dan persyaratan yang diemban oleh perancah adalah seperti yang disebutkan dibawah ini :

- a. Semua perancah dan penyangga harus mampu menyangga beban sesuai rancangannya dengan faktor keamanan tidak kekurang dari 4.
- b. Hindari terjadinya melengkung dan tidak cacat atau rusak.
- c. Perancah harus terawat dan dalam kondisi aman. Setiap komponen yang patah, terbakar atau kerusakan lainnya harus diganti.
- d. Benda-benda tidak stabil seperti drum, box, kaleng tidak boleh digunakan sebagai lantai kerja (platform) ataupun penyangga lantai kerja.
- e. Perancah dalam pemasangan, pemindahan, pembongkaran, perubahan atau modifikasi harus dalam pengawasan personil yang berkompeten.
- f. Pengelasan, pemanasan, riveting atau pekerjaan dengan api terbuka (open frame) tidak boleh dilakukan diatas staging gantung yang menggunakan fiber rope dimana fiber rope akan mudah rusak akibat kerja panas.
- g. Lifting bridles pada lantai kerja gantung dari crane harus mempunyai
 4 kaki sehingga kestabilan lantai kerja terjamin.
- h. Jika hook crane memiliki kunci pengaman (safety latch) lifting

DOI: https://doi.org/10.64168/statika.v7i1.1385

bridles pada lantai kerja gantung dari crane harus terikat dengan shackle ke lifting block, dengan kata lain harus dibuat tindakan pencegahan bahaya lepas dari hook crane

METODE PENELITIAN

Metodologi penelitian adalah serangkaian kegiatan atau prosedur yang digunakan oleh peneliti melakukan sebuah penelitian. Keberhasilan sebuah penelitian tergantung bagaimana peneliti menerapkan metode yang digunakan sehingga mampu menjawab tujuan. Penulis penelitian pada ini menganalisa perbandingan biaya penggunaan perancah kayu (konvensional) dengan perancah besi (scaffolding) pada pekerjaan struktur. Sehingga didapat berapa biaya dikeluarkan jika menggunakan perancah kayu (konvensional) dan berapa biaya yang dikeluarkan jika menggunakan perancah besi (scaffolding), apakah terdapat selisih biaya pada masing-masing alat tersebut dan efisien mana penggunaan perancah kayu (konvensional) atau perancah besi (scaffolding). Lokasi penelitian ini berada di Gedung Promosi dan museum Tapanuli Selatan, Kecamatan Sipirok, Kabupaten Tapanuli Selatan, Sumatera Utara. Waktu penelitian ini direncanakan pada bulan April tahun 2023 sampai dengan selesai. Metode digunakan untuk menyelesaikan rumusan masalah dalam Skripsi ini adalah metode analisis deskriptif dengan komparatif. Dimana metode analisis deskriptif komparatif ini adalah melakukan pengumpulan data kemudian menganalisis hingga akhirnya ditarik kesimpulan atas permasalahan yang ada. Metode ini melakukan analisis penggunaan material kayu (konvensional) dan besi (scaffolding) untuk pekerjaan perancah mengenai biaya. Dari hasil analisis tersebut dapat diperoleh

kesimpulan yang berguna dalam pembuatan keputusan. Metode penelitian ini dengan membandingkan biaya perancah (konvensional) dan perancah besi (scaffolding) dilakukan dengan cara menghitung Harga Satuan Pekerjaan (HSP) kemudian didapatkan Rencana Anggaran Biaya (RAB) dengan tipikal kusen yang sama. Analisis biaya dihitung dari gambar rencana perancah kayu (konvensional) atau (scaffolding) dengan spesifikasi masing-masing material tersebut. Analisa pengolahan data dilakukan untuk memperoleh hasil yang sesuai dengan tujuan penelitian. Bagan alir adalah bagan atau suatu diagram alir yang mempergunakan diagram atau simbol atau tanda untuk menyelesaikan suatu masalah (Siallagan, 2009). Bagan alir adalah bagan (chart) yang menunjukkan alir (flow) di dalam proses atau prosedur penelitian yang dilakukan. Bagan alir menampilkan langkah-langkah dalam bentuk simbol grafis. Bagan alir ini mewakili ilustrasi dari tahapan pemecah masalah hingga selesai yang dipergunakan untuk menganalisa data penelitian yang telah dikumpulkan, dimana terdapat garis alir berupa tanda panah untuk menunjukkan arah aliran atau proses penyelesaian yang kemudian dilanjutkan dengan langkah yang ditunjukkan oleh notasi gambar persegi yang menyatakan kegiatan atau hal yang akan terjadi dalam penelitian tersebut. Bagan alir ini dimulai ketika proses pemasangan perancah mulai dilaksanakan, kemudian dalam proses pengerjaan perancah tersebut ditemukan permasalahan, baik dari segi proses pemasangannya dan juga waktu untuk pemasangannya. Jika kedua masalah ini diidentifikasi dan dirumuskan, maka akan dapat dilakukan pengumpulan data, baik data sekunder maupun data primer seperti foto dokumentasi, gambar kerja, tahapan pekerjaan, dan juga tentang peritungan anggaran biaya dan lain-lain, sehingga dapat terkumpulnya data tersebut perhitungsn https://jurnal.ugn.ac.id/index.php/statika

DOI: https://doi.org/10.64168/statika.v7i1.1385

volume dan biaya juga waktu antara perancah kayu (konvensional) dan besi (scaffolding) dapat dilakukan. Perhitungan volume, biaya, dan waktu akan menjadi tolak ukur efisiensi antara kedua bahan tersebut jika ditinjau dari segi ekonomis, karena hasil perhitungan tersebut akan dibandingkan untuk mencapai tujuan dari penelitian ini, sehingga akan ditemukan kekurangan maupun kelebihan antara perancah kayu (konvensional) dan besi (scaffolding). Setelah hasil penelitian ini didapatkan, dan telah sesuai dengan hasil yang diperkirakan, ataupun telah menjawab permasalahan perbandingan antara kedua bahan bangunan ini, maka dapat ditarik kesimpulan dan saran yang berdasarkan hasil analisa, segingga penelitian dapat dikatakan selesai. Berikut pada Gambar 3.1, penulis membuat bagan alir penelitian tersebut untuk lebih mudah dipahami.

HASIL DAN PEMBAHASAN

a. Hasil Penelitian

Data hasil survey yang dilakukan penulis dalam penelitian ini merupakan datadata yang

diperlukan untuk melakukan analisa antara baja ringan dan rangka atap kayu. Data-data tersebut

antara lain:

- a. Spesifikasi bangunan gedung yang ditinjau
- b. Spesifikasi perancah
- c. Spesifikasi bahan yang digunakan
- d. Harga bahan yang digunakan.Spesifikasi gedung pada penelitian ini digunakan untuk mengetahui kondisi, luas bangunan beserta perancah yang digunakannya. Gedung yang ditinjau yaitu Gedung Promosi dan Museum Tapanuli Selatan. Adapun spesifikasi bangunan gedung tersebut, yaitu:

Jenis bangunan yang ditinjau adalah bangunan gedung promosi dan museum Tapanuli Selatan

dengan jumlah lantai yaitu 2 lantai.

Dimensi dan luas bangunan yang ditinjau yaitu :

Luas I = 08,00 m x 14,30 m = 114,40 m2

Luas II = $14,30 \text{ m} \times 28,20 \text{ m} = 403,26 \text{ m}$ 2

Luas III = 08,00 m x 14,30 m = 114,40 m2

Luas = 114,40 m + 403,26 m + 114,40 m = 632,06 m2

Pengurang = 632,06 m - 23,98 m = 608.08 m

Luas total = 608.08 m2

Adapun harga bahan yang digunakan dalam penelitian ini adalah harga bahan yang berhubungan dengan item pekerjaan yang terutama untuk Rencana Anggaran Biaya (RAB). Adapun harga bahan perancah kayu konvensional yang dimaksud dapat kita lihat pada tabel di bawah ini:

Tabel 3. Harga Bahan Perancah Kayu (Anonim. 2022)

No.	Bahan	Satuan	Jumla Harga
1	Kayu kelas IV	m3	Rp. 3.508.530.00
2	Paku 5 cm - 12 cm	kg	Rp. 19,479,00
3	Minyak begisting	ltr	Rp.1.494, 00
4	Balok kayu kelas III	m3	Rp.5.081,430,00
5	Playwood tebal 9 mm	Ibr	Rp.210.591,00
6	Dolken kayu galam ø (8-10)cm pj.4m	btg	Rp.45.954,50

b. Pembahasan Penelitian

Berdasarkan hasil analisa di atas dari segi biaya dapat dilihat bahwa biaya pekerjaan untuk perancah kayu lebih mahal dibandingkan dengan pekerjaan peracah besi, dimana biaya perancah kayu adalah Rp. 302.185.516,00. Sedangkan untuk peracah besi biaya yang dibutuhkan adalah sebesar Rp. 166.814.308,00. Sehingga selisih biaya antara perancah kayu dengan besi sebesar Rp. 135.371.208,00.

Dari segi waktu pelaksanan, durasi untuk pemasangan perancah besi **DOI:** https://doi.org/10.64168/statika.v7i1.1385

(scaffolding) lebih efisien dibanding dengan pemasangan perancah kayu, dimana waktu pemasangan perancah besi adalah selama 10 hari sedangkan untuk perancah kayu selama 49 hari dengan jumlah tukang sama-sama 10 Hal ini dikarenakan orang. sulitnya pengerjaan perancah kayu, karena banyaknya item pekerjaan yang dimiliki oleh perancah tersebut. Selain itu, proses pemotongan dan penyambungan kayu cenderung lebih lambat karena adanya metode-metode sambungan khusus yang berbeda dengan perancah besi.

KESIMPULAN

Berdasarkan hasil analisa perbandingan perancah kayu (konvensional) dan perancah besi (scaffolding) yang dilakukan, maka dapat diperoleh beberapa kesimpulan, yaitu:

- a. Adapun biaya perancah kayu (konvensional) sebesar Rp. 302.185.516,00 sedangkan biaya untuk perancah besi (scaffolding) sebesar Rp. 166.814.308,00.
- b. Waktu pelaksanaan untuk pekerjaan perancah kayu (konvensional) dibutuhkan selama 49 hari, sedangkan waktu pelaksanaan perancah besi (scaffolding) selama 10 hari dengan jumlah tukang antara keduanya sama sebanyak 10 orang.
- c. Selisih biaya dari perancah kayu (konvensional) dan perancah besi (scaffolding) yaitu sebesar Rp. 135.371.208,00. Dan selisih waktu pelaksanaan antara perancah kayu (konvensional) dengan perancah besi (scaffolding) yaitu sebesar 39 dimana waktu pekerjaan perancah kayu (konvensional) dan perancah besi (scaffolding) dihitung dengan menggunakan AHSP koefisien waktu pekerjaan per m3 dengan satuan OH.

DAFTAR FUSTAKA

- Morlok, E. K. (1991). Pengantar Teknik dan Perencanaan Transportasi (terjemahan). Penerbit Erlangga, Jakarta.
- Astiana, T. (2015). Value Engineering antara Perancah Konvensional dengan Scaffolding pada Proyek Konstruksi. (Tugas Akhir). Universitas 17 Agustus 1945, Surabaya
- Ervianto, W. I. (2005). Manajemen Proyek Konstruksi. Yogyakarta: Andi.
- Finda. (2011). "Pengertian Rencana Anggaran Biaya (RAB)". Diakses pada tanggal 11 Maret 2023, http://dspace.uii.ac.id
- Frick, H., & Pujo, L. S. (2007). Ilmu Konstruksi Struktur Bangunan. Seri Konstruksi Arsitektur 4. Yogyakarta: Kanisius.
- Hendra S. Raharja Putra. (2009).

 Manajemen Keuangan dan Akutansi untuk Eksekutif
 Perusahaan. PT. Raja Grafindo Persada. Jakarta.
- Hunta, Y. R. (2015). Efisiensi Penggunaan Perancah Besi dan Perancah Bambu pada Pembangunan Gedung SKPD 1 Tipe A. Universitas Negeri Gorontalo.
- Ibrahim, H. Bachtiar. (1993). Rencana Dan Estimate Real Of Cost. Cetakan ke-2. Jakarta: Bumi Aksara.Statika, Vol 7(1), 2024.1-15.15
- Nasrul. (2013). Studi Analisa Harga Satuan Pekerjaan Beton Dengan Metode BOW, SNI, Dan Lapangan Pada Proyek Irigasi Batang Anai II. Jurnal Momentum. Vol. 15 No.2. Institut Teknologi Padang, Padang.

Statika Jurnal Teknik Sipil https://jurnal.ugn.ac.id/index.php/statika

DOI: https://doi.org/10.64168/statika.v7i1.1385

Peraturan Mentri Tenaga Kerja dan Transmigrasi No: PER/01/MEN/1980 tentang Keselamatan dan Kesehatan Kerja pada Konstruksi Bangunan.

- Priyo, M., & Hermawan T. D. (2010). Aplikasi Value Engineering pada Proyek Konstruksi (Studi Kasus: Proyek Pembangunan Gedung BPKP Yogyakarta), 13(2), 116-129.
- Rafik, A., & Cahyani, R. F. (2018). Analisis Perbandingan Biaya Penggunaan Perancah Kayu Galam dan Perancah Besi (Scaffolding). Jurnal Gradasi Teknik Sipil, Volume 2, No. 1.
- Sastraatmadja, A. Soedradjat. (1984). Analisa Anggaran Biaya Pelaksanaan. Bandung: Nova.