PENGARUH CAMPURAN SERBUK KAYU SEBAGAI PENGGANTI SEBAGIAN AGREGAT HALUS TERHADAP KUAT TEKAN BETON

Ahmad Efendi Nasution 1 Sahrul Harahap2 Fithriyah Patriotika3

¹, Mahasiswa Program Studi Teknik Sipil, Fakultas Teknik, Universitas Graha Nusantara Padangsidimpuan ^{2, 3} Dosen Program Studi Teknik Sipil, Fakultas Teknik, Universitas Graha Nusantara Padangsidimpuan Email : ahmadefendi568@gmail.com

Abstark: Serbuk kayu adalah sisa-sisa dari pengolahan kayu yang dapat digunakan sebagai pengganti sebagian agregat halus pada campuran beton yang diharapkan mendapat pengaruh besar untuk kekuatan beton. Agregat halus yang akan dipakai pada beton harus melalui tahap-tahap pengujian agregat seperti pengujian gradasi, kadar air, penyerapan air, dan kadar lumpur. Beton adalah suatu elemen struktur yang terdiri dari partikel-partikel agregat yang dilekatkan oleh pasta yang terbuat dari semen portland dan air. Kuat tekan beton sangat dipengaruhi oleh banyaknya volume Serbuk Kayu dalam campuran beton. Dimana semakin besar volume serbuk kayu maka kuat tekannya akan sangat semakin menurun. Nilai kuat tekan dengan pengujian kuat tekan beton menunjukkan bahwa Beton Normal memiliki kuat Tekan Rata-rata Paling tinggi yaitu 15,15 MPa sedangkan Beton Serbuk Kayu 5% memiliki kuat tekan rata-rata 8,67 MPa, Beton Serbuk Kayu 10% memiliki kuat tekan rata-rata 6,91 Mpa dan yang paling rendah BS 15% memiliki kuat tekan rata- rata yaitu 4,92 MPa.

Kata Kunci: Agregat Halus, Serbuk Kayu, dan Kuat Tekan Beton.

PENDAHULUAN

Serbuk Kayu merupakan limbah industri penggergajian kayu. Selama ini limbah serbuk kayu banyak menimbulkan masalah dalam penanganannya yang selama ini dibiarkan membusuk, ditumpuk dan dibakar yang kesemuanya berdampak negatif terhadap lingkungan sehingga penanggulangannya perlu dipikirkan.

Sesuatu hal yang harus dipikirkan untuk penanganan ataupun pemanfaatan serbuk kayu tersebut. Apabila serbuk kayu dapat digunakan sebagai penambahan campuran beton, maka diharapkan dapat mengurangi dampak pencemaran lingkungan dan berguna bagi ilmu bidang Teknik sipil.

Beton merupakan salah satu pilihan sebagai bahan struktur dalam konstruksi bangunan. Berbagai penelitian dan percobaan dibidang beton telah dilakukan sebagai upaya untuk meningkatkan kualitas beton.

Seiring dengan perkembangan ilmu pengetahuan dan teknologi, banyak penelitian yang telah dilakukan untuk memperbaiki sifatsifat beton terutama dari segi kekuatannya menahan beban, daya tahan, keawetan, dan kemudahan pengerjaannya. Usaha untuk melakukan peningkatan mutu dan kekuatan beton diantaranya dengan menambahkan zat aditif atau dengan menambahkan serat ke dalam campuran beton. Pemakaian serat dalam campuran beton sudah cukup lama dilakukan, karena ketersediaannya namun menurun maka dikembangkan berbagai jenis, salah satunya adalah Serbuk kayu. Untuk tersebut, mengatasi hal maka penulis melakukan penelitian ini dengan Kayu sebagai menggunakan Serbuk penambahan dalam pembuatan beton.

Selain itu, jika pemanfaatan Serbuk Kayu dapat dibuktikan secara teknis sebagai bahan untuk campuran, maka diharapkan juga dapat mengurangi dampak pencemaran lingkungan.

TINJAUAN PUSTAKA

Beton merupakan fungsi dari bahan penyusunnya yang terdiri dari bahan semen hidrolik, agregat kasar, agregat halus,air, dan bahan tambah (Mulyono, 2006).

- 1. Semen merupakan serbuk yang halus yang digunakan sebagai perekat antara agregat kasar dengan agregat halus. Apabila bubuk halus ini dicampur dengan air selang beberapa waktu akan menjadi keras dan dapat digunakan sebagai pengikat hidrolis.
- 2. Agregat halus adalah pengisi yang berupa pasir, agregat yang terdiri dari butir-butir yang tajam, keras dan berukuran antara 0,075–5 mm dan kadar bagian yang kurang dari 0,063 mm tidak lebih kurang dari 5%.
- 3. Agregat kasar adalah agregat dengan ukuran 5 mm-40 mm. Agregat dapat

- diambil dari batuan alam ukuran kecil ataupun batu alam besar yang dipecah.
- 4. Air diperlukan pada pembuatan beton untuk memicu proses kimiawi semen, membasahi agregat dan memberikan kemudahan dalam pekerjaan beton. Air yang dapat diminum umumnya digunakan sebagai campuran beton.
- 5. Serbuk kayu adalah sisa-sisa dari pengolahan kayu yang dapat digunakan sebagai bahan tambah untuk kuat tekan beton. Menurut Arif (2006), penambahan berupa serbuk kayu dengan volume fraksi (Vf) sebanyak 0,25 % dari volume total beton, dan panjang serat 90 mm ke dalam adukan beton, memiliki pengaruh terhadap perubahan nilai kuat geser, beban retak pertama, workability, kuat tekan dan modulus elastisitas.

METODE PENELITIAN

Penelitian ini dimulai dengan melakukan tinjauan pustaka untuk mencari bahan referensi tentang pengujian kuat tekan beton dengan penambahan bahan. Dalam hal ini, referensi yang dipakai berupa jurnal-jurnal dan buku. Untuk mencapai hasil penelitian yang sistematis dan dapat berjalan secara efektif, efisien, serta tepat sasaran.

Penelitian dilakukan pada bulan Mei September tahun 2021. Penelitian ini dilakukan di Laboratorium Teknik Sipil Universitas Graha Nusantara Padangsidimpuan Provinsi Sumatera Utara.

Metode penelitian yang diterapkan adalah metode eksperimen, yaitu penelitian yang bertujuan untuk menyelidiki pengaruh penambahan serbuk kayu terhadap kuat tekan beton. Pengujian tes tekan beton menggunakan 48 sampel beton.

Penelitian ini meliputi tiga macam pengujian yaitu uji fisis material, uji slump dan uji kuat tekan beton. Benda uji yang dicetak pada penelitian ini dicetak dengan menggunakan cetakan silinder dengan ukuran diameter 15 cm dan tinggi 30 cm. Silinder beton tersebut dirawat dengan direndam di dalam air bersih dan kemudian diuji pada 7,14, 21 dan 28 hari.

Adapun pelaksanaan penelitian terdiri dari beberapa tahapan, untuk lebih jelas dapat kita lihat pada penjekasan di bawah ini :

- 1. Persiapan Alat dan Bahan
- 2. Pemeriksaan Bahan atau Material
- 3. Perancangan Campuran Beton
- 4. Pembuatan Benda Uji
- 5. Perawatan Benda Uji
- 6. Pengujian Kuat Tekan
- 7. Teknik Analisis Data

HASIL DAN PEMNAHASAN

A. Pengujian Agregat

Sebelum melakukan pengujian kuat tekan beton ada beberapa hal yang harus dilakukan, yaitu: pengujian kadar lumpur, kadar air agregat, analisa saringan dan pembuatan benda uji. Untuk lebih jelas dapat kita lihat pada penjelasan di bawah ini:

1. Kadar lumpur

Adapun hasil setelah dilakukan pengujian selama 24 jam yaitu sebagai berikut :

- Tinggi pasir(V_1)= 70 ml
- Tinggi air = 20 ml
- Tinggi lumpur (V_2) = 1.5 ml

Dengan penggunaan persamaan (2.3), yaitu:

Kadar lumpur pasir
$$= \frac{V2}{V1+V2} \times 100\%$$
$$= \frac{1,5}{70+1,5} \times 100\%$$
$$= 2.09 \%$$

Dari hasil perhitungan di atas yang dilakukan diperoleh kadar lumpur pasir sebesar 2,09 %, maka agregat halus dapat digunakan

sebagai campuran beton karena syarat teknis agregat halus (pasir) tidak boleh mengandung kadar lumpr lebih dari 5 % berat pasir.

2. Kadar Air Agregat

a. Agregat halus

Adapun bahan agregat halus yang digunakan untuk sampel yaitu sebagai berikut:

Berat Pan (W₁) = 138 gram
 Agregat halus (W₂) + Pan = 1138 gram
 Agregat halus (W₃) = 1000 gram
 Berat Agregat halus basah (W₄) = 1111 gram
 Berat Agregat Halus kering (W₅) = W₄ - W₁ = 1111 - 138 = 973 gr

Dengan menggunakan Persamaan berikut diperoleh kadar air agregat halus yaitu:

Kadar air agregat halus
$$= \frac{\text{w}^3 - \text{w}^4}{\text{w}^3} \times 100\%$$
$$= \frac{1000 - 973}{972} \times 100\%$$
$$= 2.77\%$$

Dari hasil perhitungan yang diperoleh kadar air sebesar 2,77 % maka agregat halus

dapat digunakan sebagai campuran beton karena syarat kadar air untuk pengujian agregat halus 3% - 5%.

b. Agregat Kasar

Adapun bahan agregat kasar yang digunakan untuk sampel yaitu sebagai berikut :

•	Berat Pan (W ₁)	= 138 gr
•	Agregat kasar (W ₂) + Pan	=2000 gram
•	Agregat kasar (W ₃)	= 1862 gram
•	Berat Agregat kasar basah (W ₄)	= 2000 gr
•	Berat Agregat kasar kering (W ₅)	$=\mathbf{W}_4-\mathbf{W}_1$
		= 2000 - 150

DOI: https://doi.org/10.64168/statika.v8i1.1588

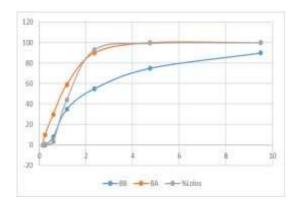
$$= 1850 \text{ gr}$$

Dengan menggunakan Persamaan berikut diperoleh kadar air agregat kasar, yaitu:

$$= \frac{\text{w}3 - \text{w}5}{\text{w}5} \times 100\%$$
$$= \frac{1862 - 1850}{1850} \times 100\%$$
$$= 0.64\%$$

Dari hasil perhitungan yang diperoleh sebesar 0,64 %, maka agregat kasar layak digunakan sebagai campuran beton termasuk dalam kategori kering udara yakni butir-butir agregat mengandung sedikit air (tidak penuh) di

dalam porinya dan permukaan butiran kering. Karena agregat kasar dapat digunakan sebagai campuran beton karena syarat kadar air untuk pengujian agregat syarat 3% - 5%.


3. Analisa Saringan

Berat sampel yang digunakan yaitu sebesar 975 gram. Adapun hasil yang di peroleh dapat kita lihat Tabel di bawah ini :

Tabel 1. Hasil Pengujian Analisa Saringan

Lubang	Berat	% Berat	% Lolos	%
Ayakan (mm)	Tertahan (gr)	Tertahan	Tertahan	Kumulatif Tertahan
9.5	0	0.00	0.00	100
4.75	0	0.00	0.00	100
2.36	5	0.51	0.51	99.49
1.18	64	6.56	7.08	92.92
0.85	0	0.00	7.08	92.92
0.6	475	48.82	55.79	44.21
0.25	398	40.82	96.62	3.38
0.15	27	2.77	99.38	0.62
Pan	6	0.62	100.00	0.00
Jumlah	975			

Setelah dilakukan penggolongan hasil uji sampel agregat halus terhadap zona I, zona II, zona III, dan zona IV maka hasil yang didapatkan agregat halus yang bersumber dari daerah Mabang-Batang Toru termasuk kedalam Zona II (pasir agak kasar). Adapun grafik dari agregat halus tersebut dapat kita lihat pada gambar di bawah ini.

Gambar 1. Grafik Distribusi Agregat Halus Pasir Mabang

DOI: https://doi.org/10.64168/statika.v8i1.1588

B. Perencanaan Campuran Beton

Perhitungan campuran untuk mencetak 48 sampel beton dengan 4

variasi jenis sampel beton silinder. Semua benda uji dalam masingmasing tipe beton dibuat dalam 4 kali adukan. Jumlah benda uji untuk masingmasing beton variasi dan beton normal

Tabel 2. Jumlah Sampel Benda Uji

Benda Uji	BS 5%	BS 10 %	BS 15 %	BN
Jumlah	12	12	12	12

1. Kebutuhan Campuran Beton

Apabila pengecoran 1 silinder dengan ukuran 15 cm x 30 cm, sehingga di peroleh volume silinder, yaitu :

Volume Silinder $= \frac{1}{4} \cdot \pi \cdot d^2 \cdot t$

 $= \frac{1}{4} \times 3,14 \times 0,15^2 \times 0,30$

 $= 0.0053 \text{ m}^3$

Kebutuhan 12 Silinder = $12 \times Volume Silinder$

 $= 12 \times 0,005 \text{ m}^3$ = 0,064 m³

Sehingga Kebutuhan agregat campuran beton untuk 48 benda uji pada umur 7, 14, 21 dan 28 hari adalah sebagai berikut :

Tabel 3. Kebutuhan Campuran Beton

Tabel 3. Rebutuhan Campulan Beton					
Benda Uji	Semen (Kg)	Pasir (Kg)	Kerikil (Kg)	Air (Liter)	Serbuk kayu (Kg)
BS 5 %	23,744	42,4384	67,008	13,76	2,2336
BS 10%	23,744	40,2048	67,008	13,76	4,4672
BS 15%	23,744	37,9712	67,008	13,76	6,7008
BN	23,744	44,672	67,008	13,76	-

Kebutuhan Campuran Beton

Semen = 0,064 × 371 kg = 23,744 kg
 Pasir = 0,064 × 698 kg = 44,672 kg
 Krikil = 0,064 × 1047 kg = 67,008 kg
 Air = 0,064 × 215 kg = 13,76 liter

Serbuk Kayu 5 % = Volume halus x 5%

= 44,672 kg x 5 %

= 2,2336 kg

Agregat halus = 44,672 kg - 2,2336

= 42.4384 kg

Serbuk Kayu 10 % = Volume halus x 10%

= 44,672 kg x 10 %

= 4,4672 kg

Agregat halus = 44,672 kg - 4,4672

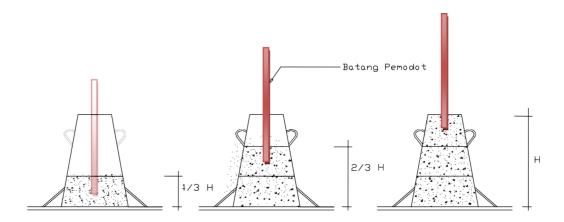
= 40.2048 kg

Serbuk Kayu 15 % = Volume halus x 15%

= 44,672 kg x 15 %

= 6.7008 kg

Agregat halus = 44,672 kg - 6.7008


= 37.9712 kg

C. Percobaan Slump Test

Adapun penampang corong slump yang digunakan dalam percobaan ini yaitu sebagai berikut:

- Diameter at as corong = 10 cm
- Diameter bawah corong = 20 cm
- Tinggi corong (H) = 30 cm

Untuk proses pengadukan beton diisikan 3 lapis dan setiap lapis di tusuk 25 kali dengan tongkat baja diameter 16 mm dan panjang 60 cm, dengan ujung dibulatkan. Setelah permukaan rata biarkan selama ½ menit kemudian kerucut ditarik vertikal keatas dengan hati - hati.

Gambar 2. Standar Pengadukan Beton Diisikan 3 Lapis

1. Pengujian Slump

Setelah dilakukan percobaan $slump\ test$, sehingga diperoleh tinggi beton setelah dilepas kerucut Abrams, yaitu:

Tabel 4. Hasil Pengujian Slump

No	Benda Uji	Tinggi Kerucut Abrams	Tinggi Beton	Nilai Slump
1	Beton Normal	30	21,5	8,5
2	Beton Serbuk Kayu 5%	30	22,1	7,9
3	Beton Serbuk Kayu 10%	30	23	7
4	Beton Serbuk Kayu 10%	30	22	8

Contoh perhitungan slump Beton Normal:

a. Tinggi kerucut *Abrams* = 30 cm
 b. Tinggi beton setelah dilepas kerucut *Abrams* = 20,5 cm

Setelah diperoleh tinggi beton setelah dilepas kerucut *Abrams*, maka nilai *slump test* dapat kita peroleh, yaitu:

Nilai slump = Tinggi cetakan – Tinggi benda uji

= 30 cm - 21.5 cm

= 8.5 cm

Dari hasil percobaan *Slump Test* di atas didapat nilai *slumpnya* sebesar 9 cm, maka campuran tersebut dapat digunakan untuk beton normal karena nilai minimal *slump* adalah 6 cm dan maksimal 10

cm.

D. Pemeriksaan Kuat Tekan Beton

Ukuran slinder yang di gunakan 15 cm x 30 cm, sehingga di peroleh volume slinder, yaitu:

$$V = \frac{1}{4} \cdot \pi \cdot d^{2} \cdot t$$

= \frac{1}{4} \cdot 3, 14 \cdot 0, 15^{2} \cdot 0, 30
= 0,0053 m³

P = 86,25 kN
= 86.250 N
A =
$$\frac{1}{4} \pi D^2$$

= $\frac{1}{4} \times 3,14 \times 15 \times 15$
= 176,625 cm²
= 17662,5 mm²
Fc' = $\frac{P}{A}$
= $\frac{86,250}{17662,5}$
= 4,9 Mpa

Setelah selesai pembuatan benda uji, maka setelah benda uji kering maka kita akan melakukan Kuat Tekan dari pada benda uji. Jumlah benda uji yang di persiapkan untuk pengujian yaitu 48 buah. Untuk lebih jelas dapat kita lihat pada tabel di bawah ini.

Dengan menggunakan persamaan berikut ini,maka kita dapat menghitung nilai kuat tekan beton dapat menggunakan persamaan sebagai berikut, yaitu:

Dari perhitungan diatas maka di dapat nilai kuat tekan beton seperti tampak pada table-tabel berikut ini.

Tabel 5. Kuat Tekan Beton 7 Hari

Tabel 3. Kuat Tekan Beton / Hall					
No	Kode Benda Uji	Berat Beban Maksimum (KN)	Hasil Kuat Tekan (Mpa)		
	N 71	157,5	8,9		
1	N 72	123,75	7,0		
	N 73	145,25	8,2		
	BS 5 % 71	86,25	4,8		
2	BS 5 % 72	75	4,2		
	BS 5 % 73	82,5	4,6		
	BS 10 % 71	63,75	3,6		
3	BS 10 % 72	56,25	3,1		
	BS 10 % 73	60	3,4		
	BS 15 % 71	60	3,4		
4	BS 15 % 72	48,75	2,8		
	BS 15 % 73	41,25	2,3		

Tabel 6. Berat Kuat Tekan Beton 14 Hari

No	Kode Benda Uji	Berat Beban Maksimum (KN)	Hasil Kuat Tekan (Mpa)
1	N 141	250	14,2
1	N 142	206,25	11,7

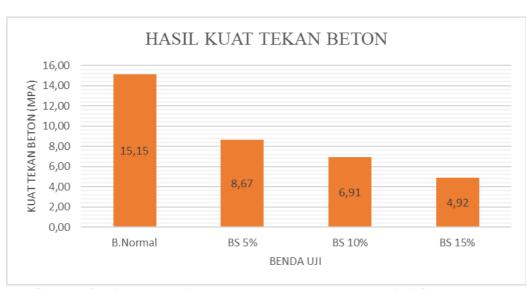
DOI: https://doi.org/10.64168/statika.v8i1.1588

	N 143	202,5	11,5
	BS 5 % 141	116,25	6,6
2	BS 5 % 142	105	5,9
	BS 5 % 143	150	8,5
	BS 10 % 141	97,5	5,5
3	BS 10 % 142	75	4,2
	BS 10 % 143	86,25	4,9
	BS 15 % 141	75	4,2
4	BS 15 % 142	67,5	3,8
	BS 15 % 143	60	3,4

Tabel 7. Kuat Tekan Beton 21 Hari

No	Kode Benda Uji	Berat Beban Maksimum (KN)	Hasil Kuat Tekan (Mpa)
	N 211	165	9,3
1	N 212	210	11,9
	N 213	176,25	9,9
	BS 5 % 211	90	5,1
2	BS 5 % 212	120	6,8
	BS 5 % 213	135	7,7
	BS 10 % 211	75	4,2
3	BS 10 % 212	71,25	4,0
	BS 10 % 213	105	5,9
	BS 15 % 211	63,75	3,6
4	BS 15 % 212	56,25	3,2
	BS 15 % 213	78,75	4,5

Tabel 8. Kuat Tekan Beton 28 Hari


No	Kode Benda Uji	Berat Beban Maksimum (KN)	Hasil Kuat Tekan (Mpa)
	N 281	375	21,2
1	N 282	210	11,9
	N 283	217,5	12.3
	BS 5 % 281	181,75	10,3
2	BS 5 % 282	150	8,5
	BS 5 % 283	127,5	7,2
	BS 10 % 281	143	8,1
3	BS 10 % 282	120	6,8
	BS 10 % 283	103	5,8
	BS 15 % 281	103	5,8
4	BS 15 % 282	75	4,2
	BS 15 % 283	82,5	4,7

Tabel diatas menjelaskan tentang hasil pengujian benda uji, berat benda uji sebelum direndam dan berat benda uji setelah direndam(perawatan), kemudian dilakukan pengujian pada umur beton 7,

14,21 dan 28 hari. Kemudian didapat hasil pada mesin *compression test*, Contoh: Benda uji (BS 5% 1) mempunyai berat 11.120 gr, setelah dilakukan perawatan selama 28 hari berat benda uji menjadi 11.390 gr, kemudian

dilakukan pengujian dan di dapat hasil beban maksimum (P) sebesar 86,25 kN pada mesin *compression test*.

Hasil kuat tekan beton rata-rata yang diperoleh dari pengaruh penambahan serbuk kayu sebagian pengganti agregat halus terhadap kuat tekan beton dapat dilihat pada gambar berikut ini .

Gambar 3. Diagram Hasil Kuat Tekan Beton Dengan Variasi Serbuk Kayu

Dari Gambar grafik 4.3 di atas dapat kita ketahui bahwa sampel beton dengan variasi serbuk memiliki kuat tekan rata – rata yang lebih rendah dibandingkan dengan sampel beton normal karena sampel beton normal memiliki hasil kuat tekan yang sangat

KESIMPULAN

Berdasarkan penelitian yang dilakukan, maka dapat diambil beberapa kesimpulan sebagai berikut:

1. Pada penelitian ini campuran serbuk kayu yang ditambahkan kedalam campuran semen dapat menurunkan kualitas beton. Kuat tekan beton dipengaruhi oleh banyaknya volume serbuk kayu dalam campuran beton. Semakin besar pencampuran volume serbuk kayu maka kuat tekannya akan semakin menurun. Penurunan kuat tekan pada beton dengan campuran

tinggi. Hasil kuat tekan tersebut diperoleh dari umur 7, 14, 21 dan 28 hari. Perbedaan kuat tekan beton dari sampel ini disebabkan oleh properties dari agregat penyusun beton, seperti agregat halus (pasir), dan agregat kasar (kerikil).

- serbuk kayu sangat signifikan hampir 50%, hal ini dapat dilihat pada hasil kuat tekan beton.
- 2. Hasil pengujian kuat tekan beton menunjukkan bahwa Beton Normal memiliki kuat Tekan Rata-rata Paling tinggi yaitu 15,15 MPa sedangkan Beton Serbuk Kayu 5% memiliki kuat tekan rata-rata 8,67 MPa, Beton Serbuk Kayu 10% memiliki kuat tekan rata-rata 6,91 Mpa dan yang paling rendah BS 15% memiliki kuat tekan rata-rata yaitu 4,92 MPa.

DAFTAR PUSTAKA

Anonim, 2000, Tata Cara Pembuatan Rencana

Campuran Beton Normal, Badan Standarisasi Nasional, Jakarta.

Vol 8(no) 1, April 2025, hal: 26-36 ISSN 2541-027X (p); 2774-9509 (e)

Statika Jurnal Teknik Sipil

https://jurnal.ugn.ac.id/index.php/statika

DOI: https://doi.org/10.64168/statika.v8i1.1588

Anonim, 2002, Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung, Badan Standarisasi Nasional, Jakarta.

Anonim, 2004, Semen Portland, Badan Standarisasi Nasional, Jakarta.

DOI: https://doi.org/10.64168/statika.v8i1.1588

- Anonim, 2008, Tata Cara Perhitungan Harga Satuan Pekerjaan Beton Untuk Konstruksi Bangunan Gedung Dan Perumahan, Badan Stabdarisasi Nasional, Jakarta.
- Anonim, 2008, Cara Uji Slump Beton, Badan Standarisasi Nasional Jakarta.
- Anonim, 2011, Tata Cara Pembuatan Dan Perawatan Benda Uji Beton Di Laboratorium, Badan Standarisasi Nasional, Jakarta.
- Anonim, 2011, Cara Uji Kuat Tekan Beton Dengan Benda Uji Silinder, Badan Standarisasi Nasional, Jakarta.
- Muhammad Ikhsan Saifuddin, Bambang Edison, S.Pd, MT, Khairul Fahmi, S.Pd, MT, Pengaruh Penambahan Campuran Serbuk Kayu Terhadap

- Kuat Tekan Beton Jurnal, Program Studi Teknik Sipil, Fakultas Teknik Universitas Pasir Pengaraian.
- Arif, 2006, Pengaruh penambahan Serbuk Kayu terhadap Kuat Geser Balok Beton Bertulang, Universitas Atma Jaya Yogyakarta, Yogyakarta.
- Felix Yap, 1964, Teknik Konstruksi Kayu, Binacipta, Malang.
- Ferguson, 1991, Dasar-dasar Beton, Erlangga, Jakarta.
- Mulyono, 2006, Teknologi Beton, Andi, Yogyakarta.
- Tjokrodimulyo, 2004, Teknologi Beton, UGM, Yogyakarta.
- Tjokrodimuljo, K. (2010). Teknologi Beton. KMTS FT UGM: Yogyakarta.